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1 Introduction

This document details the design for eCryptfs1. eCryptfs is a POSIX-compliant
enterprise-class stacked cryptographic filesystem for Linux. It is derived from
Erez Zadok’s Cryptfs, implemented through the FiST framework for generating
stacked filesystems. eCryptfs stores cryptographic metadata in the header of
each file written, so that encrypted files can be copied between hosts; the file
will be decryptable with the proper key, and there is no need to keep track of
any additional information aside from what is already in the encrypted file itself.

1To obtain eCryptfs, visit http://ecryptfs.sf.net
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eCryptfs is a native Linux filesystem. It builds as a stand-alone kernel mod-
ule for the Linux kernel2; there is no need to apply any kernel patches.

The developers are implementing eCryptfs features on a staged basis. The
first stage (version 0.1) includes mount-wide passphrase support and data confi-
dentiality enforcement. The second stage (version 0.2) will include mount-wide
public key support and data integrity enforcement. The third stage (version
0.3) will include per-file policy support. This document provides a technical
description of the eCryptfs filesystem release version 0.1. eCryptfs version 0.1 is
now complete, and the developers are recommending that eCryptfs be merged
into the mainline Linux kernel.

Michael Halcrow has published two papers covering eCryptfs at the Ottawa
Linux Symposium (2004 and 2005)3. These papers provide a high-level overview
of eCryptfs, along with extensive discussion of various topics relating to filesys-
tem security in Linux.

2 Threat Model

eCryptfs version 0.1 protects data confidentiality in the event that an unau-
thorized agent gains access to the data in a context that is outside the control
of the host operating environment. A secret passphrase predicates access to
the unencrypted contents of each individual file object. An agent without the
passphrase secret associated with any given file (see Section 4.1) should not be
able to discern any strategic information about the contents of any given en-
crypted file, aside from what can be deduced from the file name, the file size, or
other metadata associated with the file. It should be about as difficult to attack
an encrypted eCryptfs file as it is to attack a file encrypted by GnuPG (using
the same cipher, key, etc.).

No intermediate state of the file on disk should be more easily attacked than
the final state of the file on disk; in the event of a system error or power failure
during an eCryptfs operation, no partially written content should weaken the
file’s confidentiality. Attackers should not be able to detect via a watermark-
ing attack whether an eCryptfs user is storing any particular plaintext. We
assume that an attacker potentially has access to every intermediate state of an
encrypted file on secondary storage.

eCryptfs offers no additional access control functions other than what is
already implementable via standard POSIX file permissions, Mandatory Access
Control mechanisms (i.e., SE Linux), and so forth. Release 0.1 does not include
integrity verification; that feature will be included in a later release.

2Release 0.1.5 of eCryptfs requires the Linux kernel version 2.6.16.
3See http://www.linuxsymposium.org/2006/proceedings.php. The eCryptfs paper is on

page 209 of the first of the two halves of the proceedings document.
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Figure 1: Relationship between an eCryptfs file and its instantiation in the lower
filesystem.

3 Functional Overview

eCryptfs is a stacked filesystem that is implemented natively in the Linux kernel
VFS. Since eCryptfs is stacked, it does not write directly into a block device.
Instead, it mounts on top of a directory in a lower filesystem. Most any POSIX-
compliant filesystem can act as a lower filesystem; EXT2, EXT3, and JFS are
known to work with eCryptfs. Objects in the eCryptfs filesystem, including
inode, dentry, and file objects, correlate in a one-to-one basis with the objects
in the lower filesystem.

eCryptfs encrypts and decrypts the contents of the file; release 0.1 passes
through other attributes of the file unencrypted, such as the file size, the file
name, the access permissions, the timestamp, and the extended attributes. Di-
rectory contents are also passed through unencrypted. Figure 1 illustrates the
relationship between a decrypted eCryptfs file and an encrypted file on the lower
filesystem. Section 4.3 details the header contents.

eCryptfs is derived from Cryptfs[2], which is part of the FiST framework
developed and maintained by Erez Zadok[3].

3.1 VFS Objects

eCryptfs maintains the reference between the objects in the eCryptfs filesystem
and the objects in the lower filesystem. The references to the lower filesystem ob-
jects are maintained from eCryptfs via (1) the file object’s private data pointer,
(2) the inode object’s u.generic ip pointer, (3) the dentry object’s d fsdata
pointer, and (4) the superblock object’s s fs info pointer. The pointers for the
eCryptfs dentry, file, and superblock objects only reference the corresponding
lower filesystem objects.

The inode u.generic ip pointer references a data structure that contains
state information for cryptographic operations and a reference to the lower
inode object. The ecryptfs crypt stat structure is the inode cryptographic state
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structure; the contents of this struct are given in Figure 2. eCryptfs fills in the
ecryptfs crypt stat struct from information stored in the header region of the
lower file (for existing files) or from the mount-wide policy (for newly created
files).

3.2 VFS Operations

3.2.1 Mount

At mount time, a helper application generates an authentication token for the
passphrase specified by the user. eCryptfs uses the keyring support in the
Linux kernel to store the authentication token in the user’s session keyring. A
mount parameter contains the identifier for this authentication token. eCryptfs
retrieves the authentication token from the session keyring using this identifier.
It then uses the contents of the authentication token to set up the cryptographic
context for newly created files. It also uses the contents of the authentication
token to access the contents of previously created files.

3.2.2 File Open

The file format for the lower file is covered in this paper in Section 4.3.
When an existing file is opened in eCryptfs, eCryptfs opens the lower file

and reads in the header. The existence of an eCryptfs marker is verified, the
flags are parsed, and then the packet set is parsed.

The key identifier contained in the header is matched against the mount-
wide key identifier specified at mount time. If eCryptfs cannot match the key
identifier with the one specified at mount time, the open fails with a -EIO error
code. eCryptfs generates a root initialization vector by taking the MD5 sum of
the file encryption key; the root IV is the first N bytes of that MD5 sum, where
N is the number of bytes constituting an initialization vector for the cipher
being used for the file (it is worth noting that known plaintext attacks against
the MD5 hash algorithm do not affect the security of eCryptfs, since eCryptfs
only hashes secret values).

While processing the header information, eCryptfs modifies the ecryptfs crypt stat
struct associated with the eCryptfs inode object. The modifications to the
ecryptfs crypt stat structure include:

• Setting various flags, such as ECRYPTFS ENCRYPTED.

• Writing the inode file encryption key.

• Writing the cipher name.

• Writing the root initialization vector.

• Filling in the array of authentication token signatures for the authentica-
tion tokens associated with the inode.

• Setting the number of header pages.
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• Setting the extent4 size.

eCryptfs later uses this information when performing VFS operations.
When a file is opened that does not yet exist, the ecryptfs crypt stat structure

is initialized according to the mount-wide policy for release 0.1. This information
is used to generate and write the file header prior to any further VFS operations:

• The file is encrypted.

• The cipher is AES-128.

• The root IV is the MD5 hash of the session key.

• The only authentication token associated with the file is the mount-wide
passphrase specified at mount time.

• There is one header page.

• The extent size is equal to the kernel’s configured page size.

Once the ecryptfs crypt stat structure is filled in, eCryptfs initializes the ker-
nel crypto API cryptographic context for the inode. The cryptographic context
is initialized in CBC mode and is used in all subsequent page reads and writes.

3.2.3 Page Read

Reads can only occur on an open file, and a file can only be opened if an
applicable authentication token exists in the user’s session keyring at the time
that the VFS syscall that effectively opens the file takes place.

On a page read, the eCryptfs page index is interpolated into the correspond-
ing lower page index, taking into account the header page in the file. eCryptfs
derives the initialization vector for the given page index by concatenating the
ASCII text representation of the page offset to the root initialization vector
bytes for the inode and taking the MD5 sum of that string.

eCryptfs then reads in the encrypted page from the lower file and decrypts
the page. eCryptfs first sets up the cryptographic structures to perform the
decryption. It then makes the call to the kernel crypto API to perform the
decryption for the page (in release 0.1, an extent is equivalent to a page). This
decrypted page is what results from the VFS page read syscall.

3.2.4 Page Write

On a page write, eCryptfs performs a similar set of operations that occur on a
page read (see Section 3.2.3), only the data is encrypted rather than decrypted.
The lower index is interpolated, the initialization vector is derived, the page
is encrypted with the file encryption key via the kernel crypto API, and the
encrypted page is written out to the lower file.

4An extent is a contiguous region of CBC-encrypted data in the file.
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3.2.5 File Truncation

When a file is either truncated to a smaller size or extended to a larger size,
eCryptfs updates the filesize field (the first 8 bytes of the lower file) accordingly.
When seeking past the end of the file, eCryptfs writes encrypted strings of zero’s
between the previous end of the file and the new end of the file.

3.2.6 File Close

In eCryptfs release 0.1, the packet set in the header never changes after the file
is initially created. When a file is no longer being accessed, the kernel VFS
frees its associated file, dentry, and inode objects according to the standard
resource deallocation process in the VFS; eCryptfs does not perform any further
cryptographic operations on the file.

4 Cryptographic Properties

4.1 Key Management

RFC 2440 (OpenPGP)[1] heavily influences the design of eCryptfs, although
deviations from the RFC are necessary to support random access in a filesystem.
eCryptfs stores RFC 2440-compatible packets in the header for each file. Packet
types used include Tag 3 (passphrase) and Tag 11 (literal). Each file has a
unique file encryption key associated with it; the file encryption key acts as a
symmetric key to encrypt and decrypt the file contents5. eCryptfs generates
that file encryption key via the Linux kernel get random bytes() function call at
the time that a file is created. The length of the file encryption key is dependent
upon the cipher being used. By default, eCryptfs selects AES-1286.

Active eCryptfs inodes contain cryptographic contexts, with one unique con-
text per unique inode. This context exists in a data structure that contains such
things as the file encryption key, the cipher name, the root initialization vector,
signatures of authentication tokens associated with the inode, various flags in-
dicating inode cryptographic properties, pointers to crypto API structs, and so
forth. The ecryptfs crypt stat struct definition is in the ecryptfs kernel.h header
file and is comprised of the elements in Figure 2.

The file encryption key is encrypted and stored in the first extent of the lower
(encrypted) file. The file encryption key is encrypted with the authentication
token’s key that encrypts the file encryption key. Authentication token types
reflect the encryption mechanism. There is one “global” passphrase authenti-
cation token that eCryptfs generates at mount time from the user’s specified
passphrase. Conversion of a passphrase into a key follows the S2K process as
described in RFC 2440, in that the passphrase is concatenated with a salt; that
data block is then iteratively MD5-hashed 65,536 times to generate the key that
encrypts the file encryption key.

5Note that the file encryption key. is analogous to the session key referenced in RFC 2440
6Later versions of eCryptfs will allow the user to select the cipher and key length.
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Name Type Description
lock Mutex Mutex for crypt stat object

root iv Byte Array The root initialization vector
iv Byte Array The current cached initialization

vector
key Byte Array The file encryption key

cipher Byte Array Kernel crypto API cipher descrip-
tion string

keysig Byte Array Signature for authentication to-
ken associated with the inode

flags Bit vector Status flags (encrypted, etc.)
iv bytes Integer Length of IV

num header pages Integer Number of header pages for lower
file

extent size Integer Number of bytes in an extent
key size bits Integer Length of file encryption key in

bits
tfm Crypto API Context Bulk data crypto context

md5 tfm Crypto API Context MD5 crypto context

Figure 2: Contents of cryptographic stat structure (in kernel) for eCryptfs inode

eCryptfs stores authentication tokens in the user’s session keyring (a compo-
nent of the Linux kernel keyring service). Helper scripts place the authentica-
tion token containing the mount-wide passphrase into the user session keyring
at mount time.

When eCryptfs opens an encrypted file, it attempts to match the authenti-
cation token contained in the header of the file against the instantiated authen-
tication token for the mount point. If the authentication token for the mount
point matches the authentication token in the header of the file, then it uses
that instantiated authentication token to decrypt the file encryption key that is
used to encrypt and decrypt the file contents on page write and read operations.

4.2 Cryptographic Confidentiality Enforcement

eCryptfs enforces the confidentiality of the data that is outside the control of
the host operating environment by encrypting the contents of the file objects
containing the data. eCryptfs utilizes the Linux kernel cryptographic API to
perform the encryption and decryption of the contents of its files over subregions
known as extents.

In release 0.1, the length of each extent is fixed to the page size (typically
4, 096 bytes7). Since each file encrypted by eCryptfs contains a header page,
the encrypted file in the lower filesystem will always be one page larger than the

7Release 0.1 does not support moving files between hosts with kernels of differing page
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unencrypted file delivered by eCryptfs; eCryptfs transparently maps the page
indices between the eCryptfs file and the lower file on read and write operations.
Each extent is independently encrypted in CBC mode.

eCryptfs derives the initialization vector (IV) for each extent from a root
initialization vector that is unique for each file. The root IV is a subset of
the MD5 hash of the file encryption key for the file. The extent IV derivation
process entails taking the MD5 sum of the secret root IV concatenated with the
ASCII decimal characters representing the extent index.

When a readpage() request comes through as the result of a VFS syscall,
eCryptfs will interpolate the page index to find the corresponding extent in
the lower (encrypted) file. eCryptfs reads this extent in and then decrypts it;
each extent is encrypted with whatever cipher that eCryptfs selected for the file
at the time the file was created (in release 0.1, this defaults to the AES-128
cipher). Each extent region is independent of the other extent regions; they are
not chained in any way.

When a writepage() request comes through as a result of a VFS syscall,
eCryptfs will read the target extent from the lower file using the process de-
scribed in the prior paragraph. The data on that page is modified according to
the write request. The entire (modified) page is re-encrypted (again, in CBC
mode) with the same IV and key that were used to originally encrypt the page;
the newly encrypted page is then written out to the lower file.

Future releases will include support for integrity verification.

4.3 File Format

This release only supports a mount-wide passphrase, and so the packet set
consists only of a single Tag 3 followed by a single Tag 11 packet. These packets
store the encrypted file encryption key and adhere to the specification given in
RFC 2440.

The first 20 bytes consist of the file size, the eCryptfs marker, and a set of
status flags. From byte 20 on, only RFC 2440-compliant packets are valid.

Page 0:

Octets 0-7: Unencrypted file size
Octets 8-15: eCryptfs special marker
Octets 16-19: Flags

Octet 16: File format version number (between 0 and 255)
Octets 17-18: Reserved

Octet 19: Bit 1 (lsb): Reserved
Bit 2: Encrypted?
Bits 3-8: Reserved

Octet 20: Begin RFC 2440 authentication token packet set
Page 1:

Extent 0 (CBC encrypted)
Page 2:

Extent 1 (CBC encrypted)
...

In the RFC 2440 packet set, each Tag 3 (passphrase) packet is immediately
followed by a Tag 11 (literal) packet containing the identifier for the passphrase

sizes.
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in the Tag 3 packet. This identifier is formed by hashing the key that is gen-
erated from the passphrase in the String-to-Key (S2K) operation. Release 0.1
only supports one Tag 3/Tag 11 pair, which correlates with the mount-wide
passphrase.

4.3.1 Marker

The eCryptfs marker for each file is formed by generating a 32-bit random
number (X) and writing it immediately after the 8-byte file size at the head of
the lower file. The hexadecimal value8 0x3c81b7f5 is XOR’d with the random
value (Y = 0x3c81b7f5 ⊗ X), and the result is written immediately after the
random number.

4.4 Deployment Considerations

eCryptfs is concerned with protecting the confidentiality of data on secondary
storage that is outside the control of a trusted host environment. eCryptfs op-
erates on the VFS layer, and so it will not encrypt data written to the swap
secondary storage. It is recommended that the user employ dm-crypt9 to en-
crypt the swap space on a machine where sensitive data may be loaded into
memory at some point.

Selection of a passphrase should follow standard strong passphrase practices.
eCryptfs ships with various helper applications in the misc/ directory; use what-
ever tools are convenient for you to generate a strong passphrase string. The
user should store the string in a secure place and use that as the passphrase
when prompted.

4.5 Cryptographic Summary

The key design components for eCryptfs realease 0.1 are:

• Header page contains plaintext file size, eCryptfs marker, version, flags,
and RFC 2440 packets.

• A mount-wide passphrase is stored in the user session keyring in the form
of an authentication token.

• Each file has a unique randomly-generate file encryption key. The file
encryption key is encrypted and stored in the file header as a Tag 3 packet
as defined by RFC 2440.

• The authentication token identifier, which is stored in the Tag 11 packet
following the Tag 3 packet, is formed by taking the hash of the key that
encrypts the file encryption key.

8This value is arbitrary.
9See http://www.saout.de/misc/dm-crypt/

9



– The key that encrypts the file encryption key is generated according
to the S2K mechanism described in RFC 2440.

• Page-size extents are encrypted with the default cipher (AES-128) in CBC
mode.

• Each file’s root initialization vector is the MD5 sum of the file encryption
key for the file.

• The initialization vector for each extent is generated by concatenating the
root IV and the ASCII representation of the page index and taking the
MD5 sum of that string.
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