
Failure Analysis of SGI XFS File System

Krishna Pradeep Tamma, Shreepadma Venugopalan

pradeep@cs.wisc.edu, vshree@cs.wisc.edu
Computer Sciences Department

University of Wisconsin, Madison

Abstract

Commodity file systems expect a fail stop disk. But to-
days disks fail in unexpected ways. Disks exhibit latent
sector errors, silent corruption and transient failures to
name a few. In this paper we study the behavior of SGI
XFS to such errors. File systems play a key role in han-
dling most data and hence the failure handling policy of
the file system plays a major role in ensuring the integrity
of the data. XFS is a highly scalable journaling file sys-
tem developed by SGI. We analyze the failure handling
policy of XFS file system. We fail reads and writes of var-
ious blocks that originate from the file system and analyze
the file system behavior. Some such blocks include su-
per block, journal header block, commit block, data block,
index blocks. We classify our errors according to the ex-
tended IRON Taxonomy. We see that XFS is vulnerable
to these failures and does not possess a uniform failure
handling policy. Further the file system at times silently
corrupts data. We also see that XFS has very little in-
ternal redundancy even for critical structures such as the
super block and B+Tree root. Finally we see that XFS, like
most commodity file systems, fails to recover from these
failures putting the data at risk.

1 Introduction

Traditional disks are considered fail-stop in which
the disk either works or stops working. Further it is
assumed that detecting such a failure is easy. Failure
model of modern disks is changing from this tradi-

tional scenario. Modern disks exhibit more complex
behavior. Latent sector errors involve a small por-
tion of disk becoming temporarily or permanently
unavailable. Some data corruption errors include,
misdirection errors in which data is written to a
wrong location, and phantom writes that result in
incomplete writes. Modern disks comes with huge
firmware. Bugs in the firmware can lead to write
and read errors. Lastly the exhibited errors can be
transient.

File systems form the central part of any operat-
ing system kernel and controls the disk. Thus, fail-
ure handling policy of the file system plays a major
role in ensuring the integrity of the data. But most
file systems assume the traditional failure model
of disk behavior, and thus not tolerant to modern
disk faults [6]. Failure analysis of a file system in-
volves analysing the failure handling policy to dif-
ferent disk errors. Failure analysis of ReiserFS [9],
IBM JFS [1] and ext3 [11] in [6]. We adopt the tech-
niques developed in that framework and apply to
XFS. XFS is a scalable file system developed by SGI.
XFS comes with lot of guarantees, some of which in-
clude large file size, file system size, directory size
and high I/O performance. XFS is designed around
early 90s with techniques that todays file systems are
adopting. XFS is mature compared to ReiserFS, JFS
and ext3. Further XFS is developed in a commercial
setting which involves lot of testing before deploy-
ing the system. We feel analyzing the failure han-
dling policy of such a file system gives good insight
into the behavior of modern file systems with mod-

1

ern disk faults.
In our experiments we fail reads and writes of var-

ious blocks that originate from the file system and
analyze the file system behavior. Some such blocks
include super block, journal header block, commit
block, data block, index blocks. We run various
workloads to generate various block accesses and
fail such access when hitting the disk. By analyz-
ing the aftermaths we conclude on the behavior file
system.

We see that XFS is vulnerable to these failures and
does not possess a uniform failure policy. Further
the file system at times silently corrupts data. We
also see that XFS has very little internal redundancy
even for critical structures such as the super block
and B+Tree root. Finally we see that XFS like most
commodity file systems fails to recover from these
failures putting the data at risk.

Our main contributions has been to extend the ex-
isting fault injection framework to support the se-
mantics of XFS. We also analyzed XFS behavior on
read and write errors under the POSIX system calls
that exercise the file system.

The rest of this paper is organized as follows. In
Section 2 we describe the architecture of XFS file sys-
tem. Then we discuss the architecture of disk fault
injection in section 3. In Section4, we explain the
IRON taxonomy that we adopted to model the file
system failure handling policy. We present our re-
sults in section 5 and we will conclude in section 6.

2 XFS Architecture
XFS [10] is a scalable file system developed by Sili-
con Graphics Inc (SGI) as part of the IRIX operating
system. XFS was ported to the Linux operating sys-
tem [2] and licensed under GPL in 1999. We perform
disk fault injection on the Linux version of XFS. In
this section we describe major features of XFS that
are different from traditional file systems. XFS sup-
ports large (contiguous) files, large number of files,
large directories, large file-systems, sparse files, fast
crash recovery and high performance I/O. The over-
all architecture of XFS is shown in Figure 1. Here, we
briefly describe various features of XFS. The reader

System Call and Vnode Interface

Disk Drives

Volume Manager

Transaction Manager

Directory ManagerI/O Manager

Buffer Cache

Space Manager

Figure 1: XFS Architecture.

is directed to [10] for further information.

2.1 Major Components

The logical structure of XFS is similar to traditional
file systems except the transaction manager and the
volume manager. XFS is modularized into several
components as shown in Figure 1. The space man-
ager, which forms the major part of the file system,
deals with allocation of inodes and allocation of data
blocks with in individual files. Further it manages
free space in the system by employing B+Trees. The
I/O manager satisfies the I/O requests from the ap-
plications. The directory manager implements the
XFS file system name space. The buffer cache is
used to cache frequently accessed blocks similar to
the way in traditional file systems. The transaction
manager is used to make all updates to metadata

2

ATOMIC, which enables quick recovery during a
crash. The volume manager provides a layer of ab-
straction between XFS and its underlying disks. It
deals with mirroring, striping, concatenation opera-
tions.

2.2 Major Features

The scalability of XFS is achieved due to its several
features, some of which include 64-bit counters, File
allocation groups, parallelism in I/O, Direct I/O,
pervasive use of B+Trees, Dynamic Inode Alloca-
tion, and Delayed Allocation.

2.2.1 Allocation Groups

Each file system in XFS is partitioned into regions
called allocation groups similar to cylinder groups in
FFS [3]. Each allocation group size typically ranges
from 0.5GB to 4 GB. These are used in achieving scal-
ability by exploiting parallelism. Always a new di-
rectory is placed in different AG than its parent. Fur-
ther inodes in that directory and the blocks for those
inodes are allocated contiguously.

2.2.2 B+Trees

The major part of scalability in XFS should be at-
tributed to its pervasive use of B+Trees. Several
other features like dynamic inode allocation, free
space management, large file support, large direc-
tory support is made possible due to B+Tree index
structure.

2.2.3 Dynamic Inode Allocation

Unlike traditional file systems, where a part of disk
space is reserved for inodes, XFS considers dynamic
allocation of inodes and keeps track of such inodes
using B+Trees. Each allocation group uses a B+Tree
to index the locations of inodes in it. This allows
to create millions of inodes in each allocation group
and thus supporting large number of files.

2.2.4 Free Space Management

Traditional file systems use bitmaps to index free
blocks on disks. XFS again uses B+Tree to index free
space. Further XFS doesn’t record free space at block
level granularity but at extent level. An extent is a
contiguous free space. Each allocation group keeps
track of two B+Trees; one keeps track of starting lo-
cation of free space and the other keeping track of
size of free space. This double indexing allows very
flexible and efficient searching of free extents based
on type of allocation being performed.

2.2.5 Contiguous Files

XFS allocates space in terms of extents rather than
blocks. These extents are tracked using extent maps
similar to block maps in FFS, but are much smaller in
size. Each entry in the extent map consists of block
offset of the entry in the file, the length of the extent
in blocks and the starting block of the extent in the
file system.

2.2.6 Delayed Allocation

Delayed allocation involves applying lazy tech-
niques to disk space allocation. XFS reserves blocks
in the file system for the data buffered in memory.
A virtual extent is built in memory for the reserved
blocks. Delaying allocation provides the allocator
much better knowledge on the eventual size of the
file when it makes its decision to be written. Fur-
ther temporary files will never get allocated real disk
blocks.

2.2.7 Fast Crash Recovery

XFS uses write ahead logging [5] scheme that allows
atomic updates to metadata. Other modern file sys-
tems with similar features are termed as journaling
file systems. XFS is different from these file systems
in having an incore log and disk log. The incore log
is asynchronously dumped to disk.

3

2.2.8 Direct I/O

XFS supports Direct I/O to allow applications ex-
ploit raw disk bandwidth. Direct I/O allows a pro-
gram to read or write a file without first passing the
data through the system buffer cache. The data is
moved directly between the user program’s buffer
and the disk array using DMA. This avoids the over-
head of copying the data into or out of the buffer
cache, and it also allows the program to better con-
trol the size of the requests made to the underlying
devices.

2.2.9 Clustering Write Requests

XFS uses aggressive write clustering. Dirty file data
is buffered in memory in chunks of 64 kilobytes and
when a chunk is chosen to be flushed from mem-
ory, it is clustered with other contiguous requests to
form a larger request. This write behind mechanism
combined with delayed allocation gives better I/O
performance.

2.2.10 Parallelism

The transaction log is the only centralized resource
in the XFS file system. All other resources are
made independent across allocation groups. This
allows allocation of inodes and disk blocks, paral-
lel throughout the file system. Further the most
contentious resource, log, is parallelized by making
the processor performing the transaction also do the
copy.

3 Fault Injection Architecture

In the previous section we motivated the reason
behind choosing XFS for performing failure analy-
sis. In this section we describe the actual methodol-
ogy we employed in injecting the disk faults. We
adopted the framework developed in [7] and is
shown in Figure . We treat the file system as a black
box. The framework involves two major compo-
nents, the coordinator and the fault injection driver.

SCSI/IDE

Coordinator Workload

VFS Layer

Fault Injection Driver

Log

System Log

XFS File System

Disks

Linux 2.6.9

Figure 2: Fault Injection Architecture

3.1 Fault Injection Driver

The Fault injection driver is a pseudo driver placed
between the file system and the disk. The driver ex-
poses a logical device to the file system. It observes
all the traffic between the file system and the disk.
The driver has three main functions. It classifies the
blocks seen in the traffic based on the type of block.
The block type can be data block, inode block, super
block, journal block etc. Here we employ semantic
block analysis techniques developed in [8] to classify
the block. Next the driver models what the file sys-
tem above is doing. This involves finding the jour-

4

naling mode of the file system. We found that XFS
uses ordered journaling mode and discuss the tech-
niques used in detection in the next section. Lastly,
the driver injects the actual fault in the I/O stream
i.e. it informs the file system that particular block
operation has failed.

3.2 Journaling Modes

Major Journaling modes involve data journaling, or-
dered journaling and write back journaling. In data
journaling both data blocks and metadata blocks are
written to log before they are written to the actual lo-
cations. In write-back journaling mode, only meta-
data is written to log and file system don’t bother
about data writes. This ensures file system consis-
tency while file consistency may be compromised.
The third journaling mode is ordered journaling, in
which file system delays metadata journaling till the
data is written to the actual location. Different file
systems support different journaling modes. For ex-
ample, ext3 can be configured using any type of jour-
naling mode during the creation of the file system.
We found that XFS uses ordered journaling by our
experiments. We delayed the data blocks in the SBA
driver and observed that the corresponding meta-
data writes also delayed by the same time. This
shows that metadata is not getting written till the
data is written to the actual location thus showing
that the mode is ordered journaling.

3.3 Coordinator

The coordinator is a user level process, and monitors
the entire benchmarking process. The coordinator
informs the driver, the type of block to fail and the
corresponding operation which can be either read or
write. The coordinator moves the file system to a
clean state and then it forks a new process. The new
process involves some workload and the causes var-
ious block accesses. The coordinator logs all the er-
rors from the file system for later analysis.

3.4 Type aware Fault Injection

We inject faults in the I/O stream to emulate disk
faults. Randomly injecting faults to uncover file sys-
tem behavior can be time consuming. Hence to exer-
cise the file system for most block types, we perform
type aware injection. The pseudo driver performs
the block classification and the coordinator specifies
the block type to fail to the driver.By injecting faults
in the driver we emulate a whole range of possible
faults in the I/O stack. Semantic Block Level Anal-
ysis requires us to interpret the contents of the disk
block traffic to identify the block type. For exam-
ple, we look at the journal record header to infer
the commit record, start record and the number of
records in the transaction. Further we infer the loca-
tion of the journal from the super block and inodes
from the journal writes. Using these techniques we
were able to classify blocks as: super block, B+tree
root, inode, indirect, data, journal header, journal
descriptor, journal commit and journal data.To emu-
late a write fault, we fail the request and don’t is-
sue the request to the disk. Read faults are emu-
lated on up stream, because the type information
needed for block classification is available only after
the disk read. We read the block from the disk and
fail the request if it matches the fault specification.
One drawback of our approach is we don’t model
how the lower layers react to the faults. But since
we are interested in knowing how the file system re-
acts to faults, we believe that this is the correct layer
for fault injection.

4 IRON Taxonomy

IRON Taxonomy allows to define the failure pol-
icy adopted by the file system. Although the tax-
onomy is not complete, it covers most of the fail-
ure handling mechanisms adopted by the file sys-
tems. We extend the IRON taxonomy in those places
where it fails to capture the XFS failure handling
policy. IRON separates the failure handling policy
into detection and recovery classes. We discuss these
classes in this section.

5

Table 1: The levels of IRON Detection Taxonomy

Level Technique Comment
D ������� No detection Assumes disk works
D � �����	��
����� Check return codes Assumes lower level

from lower levels can detect errors
D ����������� Check data structures May require extra

for consistency space per block
D � ���� � ������� Redundancy over one Detect corruption

one or more blocks in end-to-end way
D � �! �	� �!� Detection during

unmount

4.1 Levels of Detection

Table 3 shows the various classes in the detection
taxonomy. Here we briefly discuss various classes
and emphasize the ones that are related to XFS
failure handling policy. The reader is directed to [6]
for detailed description of the taxonomy.

Zero: The file system assume disk always works
and don’t care if a request fails. It safely assumes
that the operation is succeeded.

ErrorCode: The file system checks the return
codes provided by the disk and the lower level
storage systems.

Sanity: With sanity checks, the file system ver-
ifies that its on-disk data structures are consistent.

Redundancy: The file system employs differ-
ent forms of redundancy like check-summing to
detect block corruption. Higher levels of redun-
dancy include block mirroring, parity and other
error correction codes.
Unmount: The file system remains silent when
the fault occurs, but detects the error during the
unmount.This is observed in XFS and not classified
in IRON Taxonomy.

4.2 Levels of Recovery

Similar to the levels of detection, there are various
levels of recovery classes in the IRON taxonomy.
Once again we discuss those that are related to XFS.
Table 2 shows different levels of recovery accroding
to IRON taxonomy.

Zero: The file system assumes that the disk
works, and doesn’t take any action on failures.

Propagate: The file system propagates the er-
ror to the application and assumes the user will
respond appropriately to the problem.

Stop: The current file system activity is stopped.
Such stopping can be performed at different granu-
larities. At the coarsest level it can crash the entire
machine. At an intermediate level it can kill the
process that triggered the disk fault or at the finest
level it can abort the transaction that caused the
fault.

Retry: The file system retries the failed opera-
tion. Retry handles transient errors.

Repair: The file system tries to repair the de-
tected error. Such errors include fixing a bitmap,
freeing a block etc.

Redundancy File system can use redundancy
to recover from block loss. Such redundancy can be
applied using replication, parity encodings etc.
Remount File system silently does recovery on
remount. This is observed in XFS and not classified
in IRON Taxonomy.

5 XFS Failure Policy: Results

In this section, we present the results of failure
analysis of XFS. Background information on the XFS
architecture has already been presented in section 2.
We discuss the general failure policy of XFS under
various workloads. We also graphically depict our
results, showing the XFS failure policy for each of

6

Table 2: The levels of IRON Recovery Taxonomy

Level Technique Comment
R ������� No recovery Assumes disk works
R " ����# �%$	��� � Propagate Error Informs User
R �&� ��# Stop Activity Limit amount

crash,prevent writes of damage
R ' �!��(�(Return ”guess” at Could be wrong;

block contents failure hidden
R � � � � � Retry read or write Handles failures

that are transient
R � �)# ��� � Repair data structs Could lose data
R � � *� # Remaps block or file Assumes disk informs

to different locale FS of failures
R � ���� � �%�!��� Block replication Enables recovery

or other forms from loss/corruption
R � � �	� ��� Recovery on Remount Data may be

inconsistent

the block type/system call pair. These results are
shown in Figures(3,4,5,6).We summarize the results
below. The detailed behavior of XFS under each of
the workloads can be obtained from Figures(3,4,5,6).

5.1 Write Failures

To analyze the effects of write failures, we fail
read requests from the file system for different
block types. Methods to infer block types has been
described in section 3 and elsewhere [8]. We present
the behavior of the file system on write failures for
each of the block types.

Super Block: As evident from the graph, XFS
recovers on super block failure in most cases. But
we see that the file system is not shut down in some
cases. This means there can be further corruption
and its up to the user not to issue further requests.
We also see that the file system ignores the error in a
few cases and doesn’t attempt any recovery in few.

B-Tree Root: In case of a B Tree write failure,
XFS shuts down the file system to prevent further
damage and propagates the error to the user. But

the file system attempts no recovery and can leave
the Meta data index information in an inconsistent
state. For e.g. an allocated inode may appear
unallocated due to the write failure. On continued
operations this can lead to data loss.

Inode: Inode write failures are handled much
like the B Tree root. An error is propagated to the
user, but no recovery is attempted. A failed inode
write can lead to data loss as the on disk structure
doesn’t point to the newly allocated data. Some
data blocks may be orphaned but can be recovered
using a program like fsck [4].

Indirect Block: Indirect blocks are not handled
as well as the inode. In some cases the file system
ignores the errors. But in most other cases the error
is propagated to the user and file system halted to
prevent further damage. But we see that in some
cases the file system is not halted, which can lead to
further corruption. Since no recovery takes place,
the newly allocated file data would be lost.

Data: We see that data errors are mostly ig-
nored or little action is taken other than informing
the user of the error. In most cases data loss occurs
silently without the knowledge of the user.

Journal Commit: The journal commit record is
written at the end of a transaction. No recovery
is performed on journal write errors. But the file
system is halted to reduce the damage. Since
no recovery is performed, the checkpoint data is
partially written to the disk violating transactional
consistency i.e., transactions are partially commit-
ted.

Journal Start: The journal start record indicates the
transaction start. No recovery is performed on write
errors. Even though the file system is halted, trans-
actional consistency is violated as part of the data
is check pointed. Partially committing transactions
can lead to serious meta data inconsistencies and
data loss.

Journal Header: The journal header marks the

7

start of a transaction and is much like the super
block for the records that follow. The file system
doesn’t recover the write errors to the file system
journal header. This can lead the journal records
unreadable during recovery. Hence upon recovery
from a crash the journaled transactions can’t be read.

Journal Data: Write errors to the journal data
are propagated to the user but no recovery is at-
tempted. We also see that journal data loss can slow
down crash recovery as a part of the journal may be
unavailable.

We see that XFS doesn’t handle all the write
errors well. In most cases no recovery is done and
this can leave the file system in an inconsistent
state and lead to data loss. Even some Meta data
errors are ignored, which can lead to data loss. The
failure to handle the errors uniformly causes data
corruption, losses and inconsistencies.

5.2 Read Failures
To analyze the effects of read failures, we fail read
requests from the file system for different block
types. Methods to infer block types has been
described in section 3 and elsewhere [8]. We present
the behavior of the file system on read failures for
each of the block types.

Super Block: Super block is read only during
mount and a read error leads to an unmountable file
system. XFS maintains copies of the super block in
each of the allocation groups, but doesn’t read the
redundant copy to mount the file system. On a write
to the super block only the main copy is updated
to avoid unnecessary disk traffic. XFS probably
doesn’t use the copies as they may not be up-to-date.

B-Tree Root: Read errors to the root of the B
Tree renders the entire file system unusable. The
inode are located using the B Tree and a read error
to the root makes the entire file system inaccessible.
We see no redundancy in XFS for these critical
structures.

Inode: Inode read errors are reported to the user.
Inode read errors make the entire file/directory
inaccessible. This is particularly serious for the
root directory as the entire file system cannot be
accessed. XFS has no internal redundancy to deal
with such failures.

Indirect Block: Indirect block errors are reported
to the user and no recovery is attempted. In the
absence of redundancy these errors make file and
directories partially inaccessible. But since the
indirect blocks point to a chunk of the data in large
files, these errors can lead to substantial data loss in
large files.

Data: Data read errors are reported to the user.
No recovery is attempted and these lead to partial
data loss on files and loss of files on directories.

Journal Commit: Journal reads occur at the
time of mount and recovery.The failure to read a
journal commit record causes the recovery system
to partially commit transaction, thus violating
transactional consistency. During crash recovery
partial commits may lead to inconsistencies in the
file system along with data loss.

Journal Start: Read failures to the start record
causes the recovery system to violate transactional
consistency. Partial commits can lead to meta data
inconsistencies in the file system which can lead to
data loss.

Journal Header: Journal header contains data
needed to interpret the rest of the records in the
transaction. Failures to the journal header cause the
recovery miss the entire transaction. This can lead
the file system inconsistent and lead to data loss.

Journal Data: Read errors to the journal can
cause the crash recovery to partially commit trans-
actions and miss entire transactions. These errors
can lead to Meta data inconsistencies and data loss
in the ”recovered” file system.

We see that there is little internal redundancy

8

Figure 3: Detection under Read Failure

Figure 4: Recovery under Read Failure

and most read errors cause a portion of the file sys-
tem to become unusable. Absence of redundancy
for critical structures like the root inode, B Tree
root can render the entire file system inaccessible.
We also see that no recovery is attempted on most
errors and much is left to the user. A uniform failure
handling policy is needed to prevent such losses.

Figures (3,4,5,6) indicate detection and recovery
policies of XFS file system for read and write
faults injected for each block type across a range
of workloads. The workloads are a:path traver-
sal, b:(access,chdir,chroot,stat,statfs,lstat,open),
c:(chmod,chown,utimes), d:read e:readlink,
f:getdirentries, g:creat, h:link, i:mkdir, j:rename,
k:symlink, l:write, m:truncate, n:rmdir, o:unlink,
p:mount, q:(fsync,sync), r:umount. A gray box
indicates that the workload is not applicable for the
block type. When multiple recovery mechanisms

Figure 5: Detection under Write Failure

Figure 6: Recovery under Write Failure

Table 3: Key for Interpreting Graphs

Key for Detection Key for Recovery
o D ������� o R �������
- D � �����	�	
+���� - R " ����# �%$��%� �
, D � �� ��� ���

-
R �&� ��#
, R � ��./��� ���

are observed, the symbols are superimposed in the
figure.

6 Conclusions

Modern day file system designers have paid little
attention to localized disk failures. More generally
commodity operating systems assume the presence
of reliable hardware. As disks increasingly fail in a

9

non fail stop manner, we believe there is a need for
a more uniform failure handling policy. File systems
should be paranoid and should not trust the layers
below. One solution that has been recently proposed
is to maintain internal redundancy for important
structure and checksum over the data. This way the
file system will be able to detect and recover from
most errors. Internal redundancy for critical struc-
tures like the root inode, inode B+trees is needed to
prevent sector faults from rendering the entire file
system inaccessible. So does the solution lie in an
IRON XFS? If so, what should be the level of redun-
dancy? What low-overhead detection and recovery
mechanisms can these systems employ? Many of
these need to be answered, as we try and build more
resilient and robust file systems.

7 Acknowledgements
We thank Remzi H Arpaci-Dusseau for the motiva-
tion and guidance through out this work. Further
we thank Vijayan Prabhakaran and Nitin Agarwal
for helping us understand the fault injection driver.
We also thank Lakshmi Bairavasundaram for the
useful discussions. Finally we thank the people on
SGI mailing list and other Linux kernel mailing lists.

References
[1] S. Best. JFS. http://www.ibm.com/developerworks/library/1-

jfs.html.

[2] W. E. Jim Mostek and D. Koren. Porting the SGI XFS File
System to Linux. In Linux Showcase, Atlanta, Georgia, USA,
October 1999.

[3] M. Mckusick, W. Joy, S. Leffler, and R. Fabry. A Fast File
System for Unix. In ACM Transactions on Computer Systems,
August 1984.

[4] M. McKusick, W. Joy, S. Leffler, and R. Fabry. Fsck - The
UNIX File System Check Program. In 4.3 BSD VAX-11 UNIX
Manual, April 1986.

[5] C. Mohan, D. Hederle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: a transaction recovery method sup-
porting fine-granularity locking and partial rollbacks using
write-ahead logging. In ACM Transactions on Database Sys-
tems(TODS), March 1992.

[6] V. Prabhakaran, N. Agarwal, L. Bairavasundaram, H. Gu-
nawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
IRON File Systems. In Under Submission.

[7] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Model Based Failure Analysis of Journaling File
Systems.

[8] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Analysis and Evolution of Journaling File sys-
tems. In Proceedings of the USENIX Annual Technical Confer-
ence(USENIX’05), April 2005.

[9] H. Reiser. ReiserFS. http://www.namesys.com/, 2004.

[10] A. Sweeney. Scalability in the XFS File System. In Proceedings
of the USENIX 1996 Annual Technical Conference, San Diego,
California, USA, January 1996.

[11] S. Tweedie. Journaling the Linux extfs File system. In In
the Fourth annual Linux Expo, Durham, North Carolina, USA,
May 1998.

10

