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Abstract

While user access control and encryption can protect
valuable data from passive observers, those techniques
leave visible ciphertexts that are likely to alert an active
adversary to the existence of the data, who can then com-
pel an authorized user to disclose it. This paper introduces
StegFS, a steganographic file system that aims to overcome
that weakness by offering plausible deniability to owners
of protected files. StegFS securely hides user-selected files
in a file system so that, without the corresponding access
keys, an attacker would not be able to deduce their exis-
tence, even if the attacker is thoroughly familiar with the
implementation of the file system and has gained full access
to it. Unlike previous steganographic schemes, our con-
struction satisfies the prerequisites of a practical file system
in ensuring integrity of the files and maintaining efficient
space utilization. We have completed an implementation on
Linux, and experiment results confirm that StegFS achieves
an order of magnitude improvements in performance and/or
space utilization over the existing schemes.

1. Introduction

User access control and encryption are standard data pro-
tection mechanisms in current file system products, such
as the Encrypting File System (EFS) in Microsoft Win-
dows 2000 and XP. These mechanisms enable an admin-
istrator to limit user access to a given file or directory, as
well as the specific types of actions allowed. However, ac-
cess control and encryption can be inadequate where highly
valuable data is concerned. Specifically, an encrypted file
in a directory listing or an encrypted disk volume is itself
evidence of the existence of valuable data; this evidence
could prompt an attacker to attempt to circumvent the pro-

tection or, worse, coerce an authorized user into unlocking
it. An administrator may also intentionally or inadvertently
grant access permission to other users in contradiction to the
wishes of the owner, for example by simply adding users to
a protected file’s access control list, or to the group that the
owner gives access permission to.

In order to protect data against such security threats, we
would like to have a file system that grants access to a pro-
tected directory/file only if the correct password or access
key is supplied. Without it, an adversary could get no in-
formation about whether the protected directory/file ever
exists, even if the adversary understands the hardware and
software of the file system completely, and is able to scour
through its data structures and the content on the raw disks.
Thus a user acting under compulsion would be able to plau-
sibly deny the existence of hidden information; he can dis-
close only less sensitive files, e.g. his address book, but
remain silent on valuable content like budget data, and the
adversary would not know that the user has withheld in-
formation. Unauthorized users and even the administrators
would also be unable to gain access to or sabotage the data.
Steganography, the art of hiding information in ways that
prevent its detection, offers a way to achieve the desired
protection. It is a better defense than cryptography alone
– While cryptography scrambles a message so it cannot be
understood, steganography goes a step further in making the
ciphertext invisible to unauthorized users.

There have been a number of proposals for stegano-
graphic file systems in recent years, e.g. [7, 13]. In order to
support the steganographic property, those proposals have
had to make a number of design decisions that compro-
mise the practicality of the file systems, resulting in large
increases in I/O operations, low effective storage space uti-
lizations, and even risk of data loss as hidden files could get
overwritten. With such compromises, it is unlikely that the
proposed schemes could move beyond niche applications
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into mass-market commercial file systems that are expected
to manage large volumes of data reliably and efficiently.

In this paper, we introduce StegFS, a scheme to imple-
ment a steganographic file system that enables users to se-
lectively hide their directories and files so that an adver-
sary would not be able to deduce their existence. To en-
sure its practicality, StegFS is designed to meet three key
requirements – it should not lose data or corrupt files, it
should offer plausible deniability to owners of protected di-
rectories/files, and it should minimize any processing and
space overheads. StegFS excludes hidden directories and
files from the central directory of the file system. Instead,
the metadata of a hidden directory/file object is stored in a
header within the object itself. The entire object, including
header and data, is encrypted to make it indistinguishable
from unused blocks to an observer. Only an authorized user
with the correct access key can compute the location of the
header, and access the directory/file through the header. We
have implemented StegFS on the Linux operating system,
and extensive experiments confirm that StegFS indeed pro-
duces an order of magnitude improvements in performance
and/or space utilization over the existing schemes.

The remainder of this paper is organized as follows:
Section 2 summarizes related work, including classical ap-
proaches to steganography in general and proposals for
steganographic file system in particular. Our StegFS file
system is introduced in Section 3, which also contains a dis-
cussion on some potential limitations of StegFS and ways to
work around them. Following that, Section 4 presents our
StegFS implementation on the Linux operating system, and
Section 5 profiles StegFS’s performance characteristics. Fi-
nally, Section 6 concludes the paper and discusses future
work.

2 Related Work

Current operating systems allow users to specify access
policies for their directories and files. For example, a Unix
user can set read, write and execute permissions for the
owner, users in the same group, and other users, while Win-
dows 2000 allows a directory owner to specify read or mod-
ify permissions for a list of users. These access control
mechanisms can be extended by or complemented with file
encryption. Encrypted file system products include the En-
crypting File System (EFS) in Windows 2000/XP [3] that
encrypts selected files within a folder using password- or
public key-based techniques, and E4M [2] and PGPDisk [4]
that maintain separate encrypted disk volumes, among oth-
ers. While access control and encryption can safeguard the
content of protected folders, an unauthorized observer can
still establish their existence and coerce the owner(s) into
unlocking them.

Steganography provides a countermeasure against this

vulnerability, by preventing an attacker from verifying
whether a user acting under compulsion actually discloses
all of the data. Derived from a Greek word that liter-
ally means “covered writing”, steganography is about con-
cealing the existence of messages and encompasses a wide
range of methods like invisible ink, microdots, covert chan-
nels and character arrangement. This contrasts with cryp-
tography, which is about concealing the content of mes-
sages. While the practice of steganography dates back many
centuries, the modern scientific formulation was first given
in [17]. Since then, many studies have investigated ways of
embedding a secret message, be it an electronic watermark,
a covert communication or a serial number, within still im-
ages [12], text [9], audio [18] and video [11].

The classical approaches to steganography are concerned
with embedding relatively small messages within large
cover texts, e.g. using the least significant bit of the pixels in
an image to hide copyright information. While some prod-
ucts apply these approaches directly to secure data files, e.g.
DriveCrypt [1] is capable of hiding entire disk volumes in
music files, the resulting overhead in storage space is unac-
ceptable for a general-purpose file system that needs to hold
large volumes of data with high space usage efficiency.

In [7], Anderson et al proposed two schemes for imple-
menting steganographic file systems. Both schemes allow a
user to associate a password with a file or directory object,
such that requests for the object will be granted only if ac-
companied by the correct password. An attacker who does
not have the matching object name and password, and lacks
the computational power to guess them, cannot deduce from
the raw disk data whether the named object even exists in
the file system. The first scheme initializes the file system
with a number of randomly generated cover files. When a
new object is deposited, it is embedded as the exclusive-or
of a subset of the cover files, where the subset is a func-
tion of the associated password. Compared to the classical
steganography techniques, this scheme entails a lower space
overhead as it can accommodate as many objects as there
are cover files. However, the performance penalty is very
high as every file read or write translates into I/O operations
on multiple cover files.

In contrast, the second scheme in [7] writes the blocks
of a hidden file to absolute disk addresses given by some
pseudo-random process. An implementation based on the
second scheme was reported in [13]. The problem with this
scheme is that different files could map to the same disk ad-
dresses, thus causing data loss. While the risk can be con-
trolled by replicating the hidden files and by limiting the
loading factor, it cannot be eliminated completely. In [10],
Hand and Roscoe extended the scheme to provide better
resilience on a peer-to-peer platform, by replacing simple
replication with the information dispersal algorithm (IDA)
[15]. Using IDA, a file owner chooses two numbers �

���
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Parameter Meaning Default����� ����� �
	
Percentage of abandoned
blocks in the disk volume

1%

���������������� �
Minimum number of free
blocks within a hidden file

0

������������������
Maximum number of free
blocks within a hidden file

10

� �
�"! � � Number of dummy hidden

files in the file system
10

� �
�$#&%(' � Average size of the dummy

hidden files
1 MB

Table 1. Parameters of StegFS

and encodes the hidden file into � cipher-files such that
any
�

of them suffice to reconstruct the hidden file. How-
ever, this is achieved at the expense of higher storage and
read/write overheads, and there is still the possibility of data
loss when more than ( �*) � ) cipher-files get corrupted.

3 StegFS: Steganographic File System

In this section, we present StegFS, a practical scheme
for implementing a general-purpose steganographic file sys-
tem. Our scheme is designed to satisfy three key objectives:
(a) StegFS should not lose data or corrupt files. (b) StegFS
should hide the existence of protected directories and files
from users who do not possess the corresponding access
keys, even if the users are thoroughly familiar with the im-
plementation of the file system. (c) StegFS should minimize
any processing and space overheads.

To hide the existence of a directory/file, it should be ex-
cluded from the central directory of the file system. Instead,
StegFS maintains the hidden directory/file object’s struc-
ture, eg. its inode table, in a header within the object itself.
Similarly, all records pertaining to the object, for example
usage statistics, should also be isolated within the object
instead of being written to common log files. The entire
object, including header and data, is encrypted to make it
indistinguishable from unused blocks in the file system to
an unauthorized observer. Only a user with the access key
is able to locate the file header and, from there, the hid-
den directory/file. The parameters of StegFS, which will be
explained below, are listed in Table 1. To simplify the de-
scription, we will henceforth focus on hidden files, with the
understanding that the discussion applies equally to hidden
directories.

3.1 File System Construction

Figure 1 gives an overview of the StegFS file system.
The storage space is partitioned into standard-size blocks,
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Bitmap

--AB: Abandoned
Block

Figure 1. Overview of the StegFS File System

and a bitmap tracks whether each block is free or has been
allocated – a 0 bit indicates that the corresponding block is
free, while a 1 bit signifies a used block. All the plain files
are accessed through the central directory, which is modeled
after the inode table in Unix. Hidden files are not registered
with the central directory, though the blocks occupied by
them are marked off in the bitmap to prevent the space from
being re-allocated.

When the file system is created, randomly generated pat-
terns are written into all the blocks so that used blocks do
not stand out from the free blocks. Furthermore, some ran-
domly selected blocks are abandoned by turning on their
corresponding bits in the bitmap. These abandoned blocks
are intended to foil any attempt to locate hidden data by
looking for blocks that are marked in the bitmap as hav-
ing been assigned, yet are not listed in the central directory.
The higher the number of abandoned blocks, the harder it is
to succeed with such a brute-force examination for hidden
data. However, this has to be balanced with space utiliza-
tion considerations. In practice, the number of abandoned
blocks may be determined by an administrator, or set ran-
domly by StegFS.

StegFS additionally maintains one or more dummy hid-
den files that it updates periodically. This serves to prevent
an observer from deducing that blocks allocated between
successive snapshots of the bitmap that do not belong to any
plain files must hold hidden data. The number of dummy
hidden files can also be set manually or automatically. Note
that dummy files do not eliminate the need for abandoned
blocks – whereas dummy files are maintained by StegFS
and could be vulnerable to an attacker with administrator
privileges, abandoned blocks are untraceable and hence of-
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Figure 2. Structure of Hidden File

fer extra protection.
In the example in Figure 1, the file system contains two

hidden user files, a dummy hidden file and three plain files,
each of which comprises one or more disk blocks. There
are also abandoned blocks scattered across the disk.

The structure of a hidden file is shown in Figure 2. Each
hidden file is accessed through its own header, which con-
tains three data structures:

� A link to an inode table that indexes all the data blocks
in the file.

� A signature that uniquely identifies the file.

� A linked list of pointers to free blocks held by the file.

All the components of the file, including header and data,
are encrypted with an access key to make them indistin-
guishable from the abandoned blocks and dummy hidden
files to unauthorized observers.

Since the hidden file is not recorded in the central di-
rectory, StegFS must be able to locate the file header using
only the (physical) file name and access key. During file cre-
ation, StegFS supplies a hash value computed from the file
name and access key as seed to a pseudorandom block num-
ber generator, and checks each successive generated block
number against the bitmap until the file system finds a free
block to store the header. Once the header is allocated, sub-
sequent blocks for the file can be assigned randomly from
any free space by consulting the bitmap, and linked into the
file’s inode table. To prevent overwriting due to different
users issuing the same file name and access key, the phys-
ical file name is derived by concatenating the user id with
the complete path name of the file.

To retrieve the hidden file, StegFS once again inputs the
hash value computed from the file name and access key
as seed to the pseudorandom block number generator, and
looks for the first block number that is marked as assigned
in the bitmap and contains a matching file signature. The
initial block numbers given by the generator may not hold
the correct file header because they were unavailable when
the file was created. Thus the signature, created by hashing

the file name with the access key, is crucial for confirming
that the correct file header has been located. To avoid false
matches, the file signature has to be a long string. A one-
way hash function is used to generate the signature so that
an attacker cannot infer the access key from the file name
and the signature. Examples of such hash functions include
SHA [6] and MD5 [16].

Another characteristic of a hidden file is that it may hold
on to free blocks. Here the intention is to deter any intruder
who starts to monitor the file system right after it is created,
and hence is able to eliminate the abandoned blocks from
consideration, then continues to take snapshots frequently
enough to track block allocations in between updates to the
dummy hidden files. Such an intruder would probably be
able to isolate some of the blocks that are assigned to hid-
den files. By maintaining an internal pool of free blocks
within a hidden file, StegFS prevents the intruder from dis-
tinguishing blocks that contain useful data from the free
blocks. When a hidden file is created, StegFS straightaway
allocates several blocks to the file. These blocks, tracked
through a linked list of pointers in the file header, are se-
lected randomly from the free space in the file system so as
to increase the difficulty in identifying the blocks belong-
ing to the file and the order between them. As the file is
extended, blocks are taken off the linked list randomly for
storing data or inodes until the number of free blocks falls
below a preset lower bound, at which time the internal pool
is topped up. Conversely, when the file is truncated, the
freed blocks are added to the internal pool until it exceeds
an upper bound, wherein some of the free blocks are re-
turned to the file system.

3.2 Directory Support for File Sharing

While StegFS incorporates several features to safeguard
files that are hidden by a user, it is most effective in a multi-
user environment. This is because when many blocks are
allocated for hidden files, an attacker may be able to esti-
mate the amount of useful data in these files, but there is no
way to ascertain just how much of that belong to any par-
ticular user. Hence a user acting under coercion is likely
to have a lot of leeway in denying the existence of valuable
data that is accessible by him.

One of the natural requirements of a multi-user system is
the sharing of hidden files among users. As a user may want
to share only selected files, StegFS secures each hidden file
with a randomly generated file access key (FAK) rather than
the user’s access key, so that the file name and FAK pair can
be shared among multiple users.

Figure 3 depicts the directory structure that StegFS im-
plements to help users track their hidden files. StegFS al-
lows a user to own several user access keys (UAK). For each
UAK, StegFS maintains a directory of file name and FAK
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Figure 3. Directory Structure of StegFS

pairs for all the hidden files that are accessed with that UAK.
The entire directory is encrypted with the UAK and stored
as a hidden file on the file system. The UAKs could be man-
aged independently, for example stored in separate smart
cards for maximum security. Alternatively, to make the file
system more user-friendly, UAKs belonging to a user could
be organized into a linear access hierarchy such that when
the user signs on at a given access level, all the hidden files
associated with UAKs at that access level or lower are vis-
ible. Thus, under compulsion, the user could selectively
disclose only a subset of his UAKs. Without knowing how
many UAKs the user owns, the attacker would not be able to
deduce that the user is holding back on some of his UAKs.

To share a hidden file with another user, the owner has
to release its file name and FAK pair to the recipient. Since
neither the owner nor StegFS has the UAK of the recipient,
the sharing cannot be effected automatically. Instead, the
file information is encrypted with the recipient’s public key,
and the ciphertext is sent to the recipient, for example via
email. Using a StegFS utility, the recipient then decrypts
the ciphertext with his private key and associates the hidden
file with his own UAK, at which time the file information
is added to the UAK’s directory and the ciphertext is de-
stroyed. The practice of transmitting the file information is
a relatively weak point in StegFS, as the ciphertext could
alert an attacker to the existence of the hidden file. How-
ever, as each hidden file has its own FAK, a compromised
ciphertext does not expose other hidden files in StegFS. The
file sharing mechanism is summarized in Figure 4.

Finally, when the owner of a hidden file decides to re-
voke the sharing arrangement, StegFS first makes a new
copy with a fresh FAK and possibly a different file name,
then removes the original file to invalidate the old FAK. The
outdated FAK will be deleted from the directories of other
users the next time they log in with their UAKs.

3.3 File System Backup and Recovery

Since the hidden files in StegFS are shielded even from
the system administrator, the usual method of backing up a

RecipientSender/Owner

Decrypt ciphertext to

to UAK directory

recover (filename, FAK)

Input PrivateKey-recipient

Encrypt (filename, FAK)
with UAK-recipient

Append encrypted pair

Input UAK-recipient

entries
Decrypt (filename, FAK)

Input PublicKey-recipient

Input UAK-sender

Select file to share

Receive ciphertext

of selected file

with public key

Retrieve (filename, FAK)

Encrypt (filename, FAK)

Send ciphertext to recipient

Figure 4. File Sharing in StegFS

file by copying its content no longer works for them. Yet a
brute force approach of saving the image of the entire file
system would be too time-consuming, in view of the ever-
growing capacity of modern storage devices.

StegFS saves the image of only those blocks that are al-
located in the bitmap but do not belong to any plain file in
the central directory. Plain files are still backed up by copy-
ing their content. This limits the overhead of StegFS to the
space that is occupied by abandoned blocks, dummy hidden
files, and free blocks held within the user hidden files.

To recover a damaged file system, StegFS first restores
the image of the abandoned and hidden blocks to their orig-
inal addresses. This is necessary because the hidden files
contain their own inode tables that cannot be adjusted by
the recovery process to reflect new block assignments. The
plain files are reconstructed last, possibly at new addresses.

3.4 Potential Limitations of StegFS

While StegFS offers an extra feature over a “vanilla”
file system in hiding the existence of protected files, this
is achieved at the expense of introducing a number of limi-
tations:

� All the hidden files must be restored together; it is not
possible to roll-back hidden files selectively. A work-
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around is to restore all the hidden files to a temporary
volume, from where the user can copy the required
files over to the permanent StegFS volume.

� The file system is unable to defragment hidden files to
improve their retrieval efficiency, without cooperation
from the users who possess the file access keys. This is
a common problem among secure file system products.
A solution is to offer users the option of depositing a
copy of the FAKs with the system administrator, and
to adopt measures to minimize the likelihood that the
administrator account is compromised.

� The file system cannot remove hidden files belonging
to expired user accounts without cooperation from the
users who possess the file access keys. Again, this lim-
itation is common for secure file system products, and
can be addressed by keeping a copy of the FAKs with
the administrator.

4 System Implementation

We have implemented StegFS on the Linux kernel 2.4.
Figure 5, adapted from [13], shows the system architecture.
It is implemented as a file system driver between the vir-
tual file system (VFS) and the buffer cache in the Linux
kernel, alongside other file system drivers like Ext2fs [8]
and Minix [19]. StegFS implements all the standard file
system APIs, such as open() and read(), so it is able to sup-
port existing applications that operate only on plain files.
In addition, StegFS introduces several steganographic file
system APIs for creating hidden directories/files, converting
between hidden and plain directories/files, revealing hidden
directories/files, and sharing hidden directories/files. De-
tails of these APIs are as follows.

1. void steg create(char* objname, char* UAK, char
objtype)

This function creates a hidden file or directory. It uses
SHA256 [6] as the pseudorandom number generator
for locating the hidden object (the seed is recursively
hashed to generate the pseudorandom numbers), and
the block cipher for encrypting data blocks is based on
AES [5]. The parameters are: (a) objname: name of
the hidden object to be created; (b) UAK: user access
key for the hidden object; and (c) objtype: type of the
hidden object (’f’— regular file, ’d’— directory).

2. void steg hide(char* pathname, char* objname,
char* UAK)

This function converts a plain file or directory into a
hidden object. The plain source object is deleted upon
completion. The parameters are: (a) pathname: path
name of the plain source file/directory to be converted;

VFS

Disk driver IIDisk driver I

Buffer cache

Minix Ext2FS StegFS

System Call Interface

Kernel

System calls: open(), read(), write(), etc. User space

Disk controllers Hardware

Figure 5. StegFS Implementation

(b) objname: name of the target hidden object; and (c)
UAK: user access key for the hidden object.

3. void steg unhide(char* pathname, char* objname,
char* UAK)

This function converts a hidden file or directory into a
plain object. The hidden source object is deleted upon
completion. The parameters are: (a) pathname: path
name of the target plain object; (b) objname: name of
the hidden source file/directory to be converted; and
(c) UAK: user access key for the hidden object.

4. void steg connect(char* objname, char* UAK)

This function connects a hidden object to the current
user session. It first locates the hidden object through
the (objname, UAK) pair, then adds an entry to the
current working directory to make the hidden object
visible. Connecting a hidden directory reveals all its
offsprings as well. Data blocks of the hidden object
are not decrypted by this function; they are decrypted
on-the-fly during retrieval. The parameters are: (a) ob-
jname: name of the hidden object to be connected; and
(b) UAK: user access key for the hidden object.

5. void steg disconnect(char* objname)

This function disconnects a hidden object from the cur-
rent user session, so that the object becomes invisible
again. When the user logs off, all the connected hidden
objects are automatically disconnected. The parameter
is objname, the name of the hidden object to be dis-
connected.

6. void steg getentry(char* objname, char* entryfile,
char* publickey)
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To share a hidden object with another user, the owner
calls steg getentry to store the particulars of the shared
object in entryfile. The entryfile, encrypted by the re-
cipient’s public key, is then sent to the recipient who
in turn calls steg addentry to add the object partic-
ulars to his own directory. The parameters are: (a)
objname: path name of the object to be shared with
another user; (b) entryfile: path name of the file into
which to write the encrypted object particulars; and (c)
publickey: public key of the recipient for encrypting
entryfile.

7. void steg addentry(char* objname, char* entryfile,
char* privatekey)

This function decrypts and adds the object particulars
in entryfile to the destination directory. The parameters
are: (a) objname: path name of the destination direc-
tory; (b) entryfile: path name of the file that stores the
encrypted object particulars; and (c) privatekey: pri-
vate key for decrypting entryfile.

8. void steg backup(char* fsdevice, char* backupfile)

To backup the file system, the system administrator
calls steg backup to store the current snapshot of the
file system into backupfile. The parameters are: (a)
fsdevice: path name of the device on which the file
system is mounted; and (b) backupfile: path name of
the file that stores the backup image.

9. void steg recovery(char* fsdevice, char* backup-
file)

This function recovers the file system by restoring
from the backup image in backupfile. The parameters
are: (a) fsdevice: path name of the device on which the
file system is mounted; and (b) backupfile: path name
of the file that stores the backup image.

5 Performance Evaluation

Having presented the design and implementation of our
steganographic file system, we are now ready to investigate
its efficacy relative to the alternative schemes. This section
begins with a description of the experiment set-up, then pro-
ceeds to present results from some of the more interesting
experiments.

5.1 Experiment Set-Up

To evaluate the performance of StegFS, we ran a series of
experiments with various workloads on an Intel PC. The key
parameters of the hardware are listed in Table 2, while Table
3 summarizes the workload parameters. Note in particular
that we expect many file servers to use a block size of 1

Parameter Value

Model of the CPU Intel Pentium 4
Clock speed of the CPU 1.6 GHz
Type of the hard disk Ultra ATA/100
Capacity of the hard disk 20 GB

Table 2. Physical Resource Parameters

Parameter Default

Size of each disk block 1 KBytes
Size of each file (1, 2] MBytes
Capacity of the disk volume 1 GBytes
Number of files in the file system 100
File access pattern Interleaved
Number of concurrent users 1

Table 3. Workload Parameters

KBytes – the allocation unit is 1 KBytes in NTFS, and 512
Bytes or 1 KBytes in Unix – hence we set that as the default.
However, we will also experiment with larger block sizes to
study how StegFS would perform with other file systems
(the allocation units in FAT16 and FAT32 are 32 KBytes
and 8 KBytes, respectively).

Parameter Meaning
# � ��� � # Our proposed StegFS scheme
# � ����� ��� � � Steganographic scheme using cover

files in [7]
# � ����� � ��� Steganographic scheme using ran-

dom block assignment in [7]�� � � � � %
	 � Freshly defragmented Linux file
system�� � � � %
	 � Well-used Linux file system with
fragmentation

Table 4. Algorithm Indicators

For comparison purposes, we shall benchmark against
the native file system in Linux and the two schemes pro-
posed in [7] – StegCover that hides each file among 16
cover files as recommended by the authors, and StegRand
that writes a hidden file to absolute disk addresses given
by a pseudorandom process and replicates the file to re-
duce data loss from overwritten blocks (see Section 2).
As for the native Linux file system, its performance pro-
vides an upper bound to what any file protection scheme
can achieve at best; we shall examine two separate cases –
CleanDisk and FragDisk. With CleanDisk, files are loaded
onto a freshly formatted disk volume and occupy contigu-
ous blocks; this is intended to highlight the best possible
performance limit. In contrast, FragDisk reflects a well-
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used disk volume where files are fragmented, and is simu-
lated by breaking each file into fragments of 8 blocks.

The primary performance metrics for the experiments
are: (a) the effective space utilization, i.e., the aggregate
size of the unique data files divided by the capacity of the
disk volume; and (b) the file access time, defined as the time
taken to read or write a file, averaged over 1000 observa-
tions. We exclude from consideration the cost of decrypting
hidden files after they are retrieved, which is insignificant
relative to I/O costs. For example, a 2 MBytes file can be
decrypted in less than 120 ms on our test system, whereas
the I/Os take at least 2 seconds depending on the block size.

5.2 Effective Space Utilization

We begin our investigation with an experiment to pro-
file the space utilization of the steganographic file systems.
Here the size of the disk volume is set to 1 GBytes, the
block size ranges from 512 Bytes to 64 KBytes, while the
file sizes vary uniformly between 1 and 2 MBytes.

Let us first examine the StegCover scheme. Since the
cover files must be big enough to accommodate the largest
data file, the most efficient space utilization is achieved by
setting the cover files to 2 MBytes. With file sizes in the
range of (1, 2] MBytes, each set of cover files can be 50%
to 100% utilized, thus giving an average space utilization of
75%. While we can probably improved upon the original
StegCover scheme by packing several files into each set of
cover files, and by letting large files span multiple sets of
cover files, that would introduce indexing complexities and
performance penalties, and is beyond the scope of our work.

Turning our attention to StegRand, we note that its re-
silience against data corruption can be improved by file
replication. For each replication factor in the range of 1 and
64, we load the data files one at a time until all copies of any
data block of a file are overwritten – that is when StegRand
has just passed the limit where it can safely recover all its
hidden files, and beyond which more files will be corrupted
and lost permanently. At that point, we sum up the size of
the loaded files and divide it by the disk volume size to de-
rive the effective space utilization. Each file is counted only
once in this process regardless of the number of replicates.
The results are given in Figure 6. As expected, the space uti-
lization rises initially as increasing replication factors bring
about greater resilience against data loss. However, beyond
the window of 8 to 16, higher replication factors lower the
space utilization due to the dominant effect of replication
overheads. Furthermore, smaller block sizes produce lower
space utilizations. This is because block corruptions occur
more frequently in a disk volume made up of many small
blocks than one with fewer large blocks.

Finally, we consider the StegFS scheme. Here, the only
storage overheads are incurred by the abandoned blocks,
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Figure 6. StegRand Space Utilization

the dummy hidden files, the inode structures, and the free
blocks held within the hidden files. Since there is no danger
of data blocks being overwritten, all of the remaining space
can be used for useful data. With the default settings in Ta-
ble 1, StegFS is able to consistently achieve more than 80%
space utilization.

To summarize, we have arrived at a couple of observa-
tions in this experiment. First, the StegCover scheme can-
not achieve full space utilization without extending it to per-
form file packing and spanning. Second, StegRand works
reliably only when the disk volume is very sparsely popu-
lated; file servers that are typically formatted with a 1 KByte
block size can achieve only 5% space utilization for a 1
GByte volume, and less for larger disks, before data cor-
ruption sets in. This result is consistent with the findings
in [7]. Third, the proposed StegFS is capable of achieving
higher space utilizations than StegCover, and is at least 10
times more space-efficient than StegRand.

5.3 Performance Analysis

Having demonstrated StegFS’s superior space utiliza-
tion, we now focus on its performance characteristics. This
experiment is intended to study how well it works, rela-
tive to the native file system and the other steganographic
schemes, on file servers where I/O operations from several
users or applications are interleaved. For StegCover, the
number of cover files is 16, while a replication factor of 4
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is used for StegRand, both according to the authors’ recom-
mendation in [7]. The disk volume size and the block size
are set to 1 GBytes and 1 KBytes, respectively, while the
file sizes vary uniformly between 1 and 2 MBytes.

Figures 7(a) and (b) give the read and write access times,
respectively, for the various file systems. Since StegCover
spreads each hidden file among multiple cover files, ev-
ery file operation translates to several disk I/Os, hence its
read and write access times are very much worse than the
rest. As for StegRand, its read performance is worse than
StegFS’s due to the need to hunt for an intact replicate when
the primary copy of a file is found to be corrupted, whereas
the write access times are much worse because all the repli-
cates must be updated.

As for StegFS, its access times are slower than those of
CleanDisk and FragDisk under very light load conditions
as they produce sequential I/Os on contiguous data blocks,
particularly for read operations that benefit from the read-
ahead feature of the hard disk. However, the differentiation
diminishes with increased workload, as file operations be-
come increasingly interleaved. In fact, StegFS matches both
CleanDisk and FragDisk from 16 concurrent users onwards
for read operations, and from just 8 users for write oper-
ations. Finally, the relative trade-offs between the various
schemes are independent of the file size, as shown in Fig-
ures 8(a) and (b).

In summary, this experiment demonstrates that both of
the previous steganographic schemes introduce very high
read and/or write penalties and are not suitable for file
servers that must handle heavy loads. In contrast, StegFS is
a practical steganographic file system that delivers similar
performance to the native Linux file system in a multi-user
environment.

5.4 Sensitivity to File Access Patterns

The next experiment is aimed at discovering the sensi-
tivity of the various file systems’ performance to the file
access pattern. Specifically, we are looking at a situation
where each file is retrieved in its entirety before the next file
is opened, as may happen in a very lightly loaded file server.
Besides the number of concurrent users which is fixed at 1,
the other workload parameters remain as in the previous ex-
periment.

Figures 9(a) and (b) show the read and write access times
for the various file systems, with the file size fixed at 1
MBytes. Here, CleanDisk delivers the best performance
as expected since all its files occupy contiguous blocks.
FragDisk, which breaks each file into fragments of 8 blocks,
is slower due to the extra overhead in seeking to each frag-
ment. This indicates that as the file system gets more frag-
mented, its performance would gradually degrade to that of
StegFS even in single-user environments where file opera-
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tions are not interleaved. The difference in performance is
more pronounced with small block sizes where FragDisk
has to perform more fragment seeks, and StegFS and Ste-
gRand incur more block seeks.

This experiment demonstrates that while StegFS
achieves similar performance to the Linux file system in a
multi-user environment, the penalty that StegFS incurs in
hiding data files is noticeable when the load is so light that
file I/Os are not interleaved. Even then, StegFS still deliv-
ers acceptable access times and outperforms the previous
steganographic schemes significantly.

6 Conclusion

In this paper, we introduce StegFS, a practical scheme to
implement a steganographic file system that offers plausi-
ble deniability to owners of protected files. StegFS securely
hides user-selected files in a file system so that, without the
corresponding access keys, an attacker would not be able to
deduce their existence, even if the attacker understands the
hardware and software of the file system completely, and is
able to scour through its data structures and the content on
the raw disks. Thus a user acting under compulsion would
be able to plausibly deny the existence of hidden informa-
tion. StegFS achieves this steganographic property while
ensuring the integrity of the files, and maintaining efficient
space utilization at the same time. StegFS excludes hid-
den directory and file objects from the central directory of
the file system. Instead, the metadata of a hidden object is
stored in a header within the object itself. The entire object,
including header and data, is encrypted to make it indis-
tinguishable from unused blocks to an observer. Only an
authorized user with the correct access key can compute the
location of the header, and access the hidden directory/file
through the header.

We have implemented StegFS as a file system driver in
the Linux kernel 2.4; the code is available for public down-
load at http://xena1.ddns.comp.nus.edu.sg/SecureDBMS/.
Extensive experiments on the system confirm that StegFS is
capable of achieving an order of magnitude improvements
in performance and/or space utilization over the existing
steganographic schemes. In fact, StegFS is just as fast in
a multi-user environment as the native Linux file system,
which is the best that any file protection scheme can aim
for.

For future work, we are extending the techniques in
StegFS to DBMS. Specifically, we are investigating how
database tables, hash indices and B-trees can be hidden
effectively while preserving the DBMS’ ability to control
concurrency and recover data. We are also looking for bet-
ter ways to overcome the limitations described in Section
3.4. Building a P2P-based StegFS as an application on top
of BestPeer [14] is also on our agenda.
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