
NTFS Documentation

Richard Russon
Yuval Fledel

NTFS Documentation
by Richard Russon and Yuval Fledel

Abstract

This is technical documentation, created to help the programmer.

It was originally written to complement the Linux NTFS driver [http://linux-ntfs.sourceforge.net/].

The latest version is available online at: http://linux-ntfs.sourceforge.net/ntfs/index.html and can be
downloaded from: http://sourceforge.net/project/showfiles.php?group_id=13956

We're confident that the information is correct. We think we know where there are gaps in our know-
ledge. We may be wrong. Beware.

For simple answers to common questions, try reading the NTFS FAQ
[http://linux-ntfs.sourceforge.net/info/ntfs.html].

http://linux-ntfs.sourceforge.net/
http://linux-ntfs.sourceforge.net/ntfs/index.html
http://sourceforge.net/project/showfiles.php?group_id=13956
http://linux-ntfs.sourceforge.net/info/ntfs.html

Table of Contents
1. Prologue .. 1

1. NTFS Documentation Preface .. 1
2. About the NTFS Documentation ... 1
3. Tables Legend ... 3
4. Volume Layout ... 4

2. NTFS Attributes .. 7
1. Overview ... 7
2. Attribute - $STANDARD_INFORMATION (0x10) ... 7
3. Attribute - $ATTRIBUTE_LIST (0x20) ... 9
4. Attribute - $FILE_NAME (0x30) .. 11
5. Attribute - $OBJECT_ID (0x40) ... 13
6. Attribute - $SECURITY_DESCRIPTOR (0x50) .. 14
7. Attribute - $VOLUME_NAME (0x60) .. 22
8. Attribute - $VOLUME_INFORMATION (0x70) ... 23
9. Attribute - $DATA (0x80) ... 24
10. Attribute - $INDEX_ROOT (0x90) ... 25
11. Attribute - $INDEX_ALLOCATION (0xA0) .. 28
12. Attribute - $BITMAP (0xB0) ... 29
13. Attribute - $REPARSE_POINT (0xC0) .. 30
14. Attribute - $EA_INFORMATION (0xD0) .. 32
15. Attribute - $EA (0xE0) .. 33
16. Attribute - $LOGGED_UTILITY_STREAM (0x100) ... 34

3. NTFS Files ... 35
1. Overview ... 35
2. NTFS Files: $MFT (0) .. 36
3. NTFS Files: $MFTMirr (1) .. 37
4. NTFS Files: $LogFile (2) .. 38
5. NTFS Files: $Volume (3) .. 43
6. NTFS Files: $AttrDef (4) .. 43
7. NTFS Files: . (Root Directory) (5) .. 46
8. NTFS Files: $Bitmap (6) ... 47
9. NTFS Files: $Boot (7) .. 48
10. NTFS Files: $BadClus (8) .. 50
11. NTFS Files: $Secure (9) .. 51
12. NTFS Files: $UpCase (10) ... 54
13. NTFS Files: $Extend (11) .. 55
14. NTFS Files: $ObjId (Any) ... 55
15. NTFS Files: $Quota (NT:9, 2K:Any) ... 57
16. NTFS Files: $Reparse (Any) .. 59
17. NTFS Files: $UsnJrnl (Any) ... 60

4. NTFS Concepts ... 64
1. Overview ... 64
2. Concept - Attribute Header .. 64
3. Concept - Attribute Id ... 68
4. Concept - B*Trees ... 68
5. Concept - Clusters .. 72
6. Concept - Collation .. 73
7. Concept - Compression ... 74
8. Concept - Data Runs .. 77
9. Concept - Directory .. 84
10. Concept - File .. 86
11. Concept - File Record ... 88
12. Concept - File Reference ... 92

iv

13. Concept - Filename Namespace .. 92
14. Concept - Fixup ... 93
15. Concept - Index Header ... 96
16. Concept - Index Record ... 97
17. Concept - Links ... 99
18. Concept - Restart ... 99
19. Concept - SID ... 99
20. Concept - Sparse .. 103

5. Epilogue .. 104
1. ToDo ... 104
2. Unanswered Questions .. 105
3. History .. 106

Appendix I. License ... 110
1. GNU Free Documentation License .. 110

Glossary .. 115

NTFS Documentation

v

List of Tables
1.1. Size fields table legend ... 3
1.2. An example for an index table ... 4
1.3. NTFS volume versions for each OS .. 4
1.4. Layout of a freshly formatted NTFS volume ... 4
2.1. Standard NTFS Attributes ... 7
2.2. Layout of the $STANDARD_INFORMATION (0x10) attribute 8
2.3. File Permissions .. 8
2.4. Layout of the $ATTRIBUTE_LIST (0x20) attribute .. 10
2.5. Layout of the $FILE_NAME (0x30) attribute ... 11
2.6. File Flags ... 12
2.7. Layout of the $OBJECT_ID (0x40) attribute .. 13
2.8. Layout of the $SECURITY_DESCRIPTOR (0x50) attribute 14
2.9. Layout of the $SECURITY_DESCRIPTOR (0x50) attribute header 15
2.10. Layout of an ACL .. 16
2.11. Layout of an ACE .. 16
2.12. ACE types .. 16
2.13. ACE flags .. 17
2.14. ACE audit flags ... 17
2.15. ACE access mask .. 17
2.16. SID contents ... 18
2.17. SID example ... 18
2.18. Security Descriptor Control Flags ... 18
2.19. Layout of the $VOLUME_NAME (0x60) attribute .. 22
2.20. Layout of the $VOLUME_INFORMATION (0x70) attribute 23
2.21. Volume Flags ... 23
2.22. Volume Version Numbers ... 24
2.23. Layout of the $DATA (0x80) attribute ... 24
2.24. Layout of the $INDEX_ROOT (0x90) attribute: an Index Root 26
2.25. Layout of the $INDEX_ROOT (0x90) attribute: an Index Header 26
2.26. Index flags ... 26
2.27. Common Indexes ... 27
2.28. Layout of the $INDEX_ALLOCATION (0xA0) attribute .. 28
2.29. Layout of a data entry in the $INDEX_ALLOCATION (0xA0) attribute 28
2.30. Data entry flags ... 29
2.31. Layout of the $BITMAP (0xB0) attribute ... 30
2.32. Layout of the $REPARSE_POINT (0xC0) attribute (Microsoft Reparse Point) 30
2.33. Layout of the $REPARSE_POINT (0xC0) attribute (Third-Party Reparse Point) 30
2.34. Symbolic Link Reparse Data .. 31
2.35. Volume Link Reparse Data .. 31
2.36. Reparse Tag Flags ... 31
2.37. Layout of the $EA_INFORMATION (0xD0) attribute .. 33
2.38. Layout of the $EA (0xE0) attribute ... 33
2.39. EA flags .. 33
2.40. Layout of the $LOGGED_UTILITY_STREAM (0x100) attribute 34
3.1. Layout of files on the Volume .. 35
3.2. $MFT Attributes ... 36
3.3. Sample records from the beginning of $MFT .. 36
3.4. $MFTMirr Attributes ... 37
3.5. Layout of $MFTMirr ... 38
3.6. $LogFile Attributes ... 38
3.7. $Volume Attributes ... 43
3.8. $AttrDef Attributes .. 43
3.9. Layout of $AttrDef .. 44

vi

3.10. $AttrDef Collation Rules .. 44
3.11. $AttrDef Flags .. 45
3.12. $AttrDef example from Windows NT .. 45
3.13. $AttrDef example from Windows 2000/XP .. 46
3.14. Dot (.) Attributes ... 46
3.15. Layout of Dot (.) ... 47
3.16. $Bitmap Attributes ... 47
3.17. Layout of $Bitmap ... 48
3.18. $Boot Attributes .. 48
3.19. Layout of $Boot .. 49
3.20. $BadClus Attributes ... 50
3.21. $Secure Attributes ... 51
3.22. Layout of $Secure:$SDS ... 52
3.23. Layout of $Secure:$SDH .. 52
3.24. Layout of $Secure:$SII ... 53
3.25. $UpCase Attributes .. 54
3.26. Layout of $UpCase .. 54
3.27. $Extend Attributes ... 55
3.28. $ObjId Attributes ... 55
3.29. Layout of $ObjId:$O .. 56
3.30. $ObjId flags ... 56
3.31. $Quota Attributes .. 57
3.32. Layout of $Quota:$O ... 57
3.33. Layout of $Quota:$Q ... 58
3.34. $Quota flags ... 58
3.35. $Reparse Attributes .. 59
3.36. Layout of $Reparse:$R ... 60
3.37. $UsnJrnl Attributes .. 60
3.38. Layout of $UsnJrnl:$J .. 61
3.39. Layout of $UsnJrnl:$Max .. 61
3.40. $UsnJrnl reason flags ... 62
3.41. $UsnJrnl source info flags ... 62
4.1. NTFS Concepts .. 64
4.2. Layout of a resident unnamed attribute header .. 65
4.3. Layout of a resident named attribute header .. 65
4.4. Layout of a non-resident unnamed attribute header .. 66
4.5. Layout of a non-resident named attribute header .. 66
4.6. Attribute flags .. 67
4.7. Default cluster size .. 72
4.8. Collation types .. 73
4.9. Default collations types for standard indexes .. 73
4.10. Layout of a data run ... 77
4.11. Parsed data runs: Example 1 - Normal, Unfragmented File .. 81
4.12. Parsed data runs: Example 2 - Normal, Fragmented File .. 82
4.13. Parsed data runs: Example 3 - Normal, Scrambled File ... 82
4.14. Parsed data runs: Example 4 - Sparse, Unfragmented File .. 83
4.15. Parsed data runs: Example 5 - Compressed, Unfragmented File 84
4.16. A directory record attributes .. 85
4.17. A file record attributes .. 86
4.18. Fictional named data streams ... 87
4.19. Summary Information named data streams ... 88
4.20. contents of Summary Information named data streams .. 88
4.21. Layout of a file record .. 89
4.22. File record flags .. 90
4.23. Layout of a file reference .. 92
4.24. Fixup example: before .. 94
4.25. Fixup example: after .. 95
4.26. Layout of a Standard Index Header ... 96

NTFS Documentation

vii

4.27. List of Common Indexes ... 97
4.28. Layout of an Index record header .. 97
4.29. Common well known SIDs .. 100
4.30. Identifier Authorities .. 100
4.31. Relative Identifiers ... 101
4.32. Domain Users ... 101
4.33. Domain Groups ... 102
4.34. Domain Aliases ... 102
4.35. Universal well-known SIDs ... 102
4.36. NT well-known SIDs ... 103
122. Measurement Units ... 128

NTFS Documentation

viii

Chapter 1. Prologue
1. NTFS Documentation Preface

This is version 0.5 of the NTFS Documentation and is available as part of the Linux-NTFS Project
[http://linux-ntfs.sourceforge.net/]

This is technical documentation, created to help the programmer.

It was originally written to complement the Linux NTFS driver [http://linux-ntfs.sourceforge.net/].

The latest version is available online at: http://linux-ntfs.sourceforge.net/ntfs/index.html and can be
downloaded from: http://sourceforge.net/project/showfiles.php?group_id=13956

For simple answers to common questions, try reading the NTFS FAQ
[http://linux-ntfs.sourceforge.net/info/ntfs.html].

2. About the NTFS Documentation
2.1. Overview

NTFS is the filesystem of Windows NT, 2000 and XP. It supports almost all POSIX features, all HFS
features, and all HPFS features.

• It can deal with large capacity (up to 2 46 GB) storage units.

• It has built-in data compression.

• It uses log file for transactions.

• Byte order: everything is little-endian on-disk.

2.2. Documentation Layout

• Chapter 1 - Prologue: is information describing the documentation.

• Chapter 2 - Files: is a list of the Metadata files.

• Chapter 3 - Attributes: is a list of Metadata attributes.

• Chapter 4 - Concepts: is a list of objects that are neither file, nor attribute.

• Chapter 5 - Epilogue: is some more information about the documentation.

• Appendix I - License: is the license under which the documentation is distributed.

• The Glossary: is a what's what of technical terminology

2.3. Accuracy

1

http://linux-ntfs.sourceforge.net/
http://linux-ntfs.sourceforge.net/
http://linux-ntfs.sourceforge.net/ntfs/index.html
http://sourceforge.net/project/showfiles.php?group_id=13956
http://linux-ntfs.sourceforge.net/info/ntfs.html

Microsoft hasn't released any documentation for NTFS. These documents have been pieced together
partly by carefully reading all the SDKs and Windows help but mostly by reverse-engineering the
filesystem.

We're confident that the information is correct. We think we know where there are gaps in our know-
ledge. We may be wrong. Beware.

2.4. Contact Points
You can post questions to an open forum on SourceForge [http://sourceforge.net/] at: ht-
tp://sourceforge.net/forum/forum.php?forum_id=44084

If you'd like to get more involved in the Linux project, then you can join one of the mailing lists (both
low volume).

• A general list for NTFS: http://tiger.informatik.hu-berlin.de/cgi-bin/mailman/listinfo/linux-ntfs

• A bit more technical one: http://lists.sourceforge.net/lists/listinfo/linux-ntfs-dev

Alternatively, if you have any questions, suggestions or corrections, please email me.

Richard Russon

2.5. License
Copyright (C) 1996-2004 Richard Russon.

Copyright (C) 2005 Yuval Fledel.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation;

• With the Invariant Sections being Thanks

• With the Front-Cover Texts being About the NTFS Documentation

• And with the no Back-Cover Texts.

A copy of the license is included in the section entitled GNU Free Documentation License.

2.6. Thanks
Many thanks to the following for their help preparing these documents.

• Albert Cahalan

• Alex Ionescu

• Anton Altaparmakov

• Bram Moolenaar (for vim)

• Damon Casale

Prologue

2

http://sourceforge.net/
http://sourceforge.net/forum/forum.php?forum_id=44084
http://sourceforge.net/forum/forum.php?forum_id=44084
http://tiger.informatik.hu-berlin.de/cgi-bin/mailman/listinfo/linux-ntfs
http://lists.sourceforge.net/lists/listinfo/linux-ntfs-dev

• David Dillard

• Domagoj Pensa

• Helen Custer

• Martin von Löwis

• Olof Wolgast

• Rani Assaf

• Régis Duchesne

• Richard Russon

• Yuval Fledel

3. Tables Legend
3.1. Overview

The tables in this documentation aren't completely consistant. Below is a key to the tables showing how
various fields are represented.

3.2. Footnotes
Any table fields that have footnote marks, e.g. (a), (e), will have a fuller description immediately below
the table.

3.3. Size Fields
In NTFS not all fields are of a fixed size. Some depend on the value of another field, some depend on
the contents of the field.

All the numbers in size fields are in decimal format. e.g. 12 (twelve), 42 (forty-two).

Table 1.1. Size fields table legend

Key Name Description

12 Fixed This field is twelve bytes long. Its size is constant.

P8 Padding P8 means pad the field to an 8 byte boundary. The size of this field
could be 0 - 7 bytes. P4 means 4 byte alignment, etc (a)

V Variable The length of this field depends on its contents. An example is a
SID. To know its length, you must decode the structure.

S X-Ref A cross-reference shows that the size is defined elsewhere in the ta-
ble. The size can be represented by any letter, except P or V.

(a) Any padding of a fixed size will be displayed as a fixed size.

Prologue

3

3.4. Indexes
Where a table represents an index, the key and data will be shown as below:

Table 1.2. An example for an index table

Offset Size Description

0x00 2 Offset to data

0x02 2 Size of data

0x04 4 Key SID

0x08 4 Data Owner Id

0x0C 4 Data Hash

3.5. Operating System
Note that the fields are not all used in exactly the same way. NT indicates old fields whereas 2K and XP
indicate new fields.

Table 1.3. NTFS volume versions for each OS

OS NTFS Description

blank all Used by all versions of Windows

NT 1.2 Only used in Windows NT

2K 3.0 Windows 2000 and later

XP 3.1 New to Windows XP

repeating groups?
link padding8, padding and other table features to help/tables
consistant use of padding/alignment fields

4. Volume Layout
4.1. Overview

A freshly formatted NTFS volume will look like:

Table 1.4. Layout of a freshly formatted NTFS volume

B

O

O

M

F

T

Free Space More

Meta

data

Free Space

Prologue

4

T

4.2. Notes

4.2.1. Other information

Everything is a file in NTFS. The index to these files is the Master File Table (MFT). The MFT lists the
Boot Sector file ($Boot), located at the beginning of the disk. $Boot also lists where to find the MFT.
The MFT also lists itself.

Located in the centre of the disk, we find some more Metadata files. The interesting ones are:
$MFTMirr and $LogFile. The MFT Mirror is an exact copy of the first 4 records of the MFT. If the
MFT is damaged, then the volume could be recovered by finding the mirror. The LogFile is journal of
all the events waiting to be written to disk. If the machine crashes, then the LogFile is used to return the
disk to a sensible state.

Hidden at the end of the volume, is a copy of the boot sector (cluster 0). The only Metadata file that
makes reference to it is $Bitmap, and that only says that the cluster is in use.

4.2.2. MFT Zone

To prevent the MFT becoming fragmented, Windows maintains a buffer around it. No new files will be
created in this buffer region until the other disk space is used up. The buffer size is configurable and can
be 12.5%, 25%, 37.5% or 50% of the disk. Each time the rest of the disk becomes full, the buffer size is
halved.

MFT Zone Reservation IS NOT STORED ON DISK
MFT Zone (reserved space for MFT)
1 = 12.5%
2 = 25.0%
3 = 37.5%
4 = 50.0%
Where is this stored on disk?
volume? mft? boot?
This is the 'system files' space at
the beginning of the disk.
NtfsMftZoneReservation

link in to mft and bitmap

• cluster size 512 bytes, 1k, 2k, 4k, 8k, 16k, 32k, 64k

• very flexible, all the system files can be relocated, except $Boot

• supports streams named data streams

• attributes for a file can span several MFT records not necessarily contiguous or in order

• everything is an attribute, including the data

• filenames stored in Unicode

• journalling file system

Prologue

5

• compression

• security

• hard links

• encryption

• LCNs vs VCNs

Prologue

6

Chapter 2. NTFS Attributes
1. Overview

Each MFT FILE Record is built up from Attributes.

The list of possible Attributes is defined in $AttrDef.

Table 2.1. Standard NTFS Attributes

Type OS Name

0x10 $STANDARD_INFORMATION

0x20 $ATTRIBUTE_LIST

0x30 $FILE_NAME

0x40 NT $VOLUME_VERSION

0x40 2K $OBJECT_ID

0x50 $SECURITY_DESCRIPTOR

0x60 $VOLUME_NAME

0x70 $VOLUME_INFORMATION

0x80 $DATA

0x90 $INDEX_ROOT

0xA0 $INDEX_ALLOCATION

0xB0 $BITMAP

0xC0 NT $SYMBOLIC_LINK

0xC0 2K $REPARSE_POINT

0xD0 $EA_INFORMATION

0xE0 $EA

0xF0 NT $PROPERTY_SET

0x100 2K $LOGGED_UTILITY_STREAM

1.1. Notes

1.1.1. Other Information

$PROPERTY_SET, $SYMBOLIC_LINK and $VOLUME_VERSION existed in NTFS v1.2, but wer-
en't used. They no longer exist in NTFS v3.0 (that used by Win2K).

Each MFT record has a Standard Header, followed by a list of attributes (in order of ascending Attribute
Id) and an end marker. The end marker is just four bytes: 0xFFFFFFFF.

2. Attribute - $STANDARD_INFORMATION
(0x10)

7

2.1. Overview
In old version of NTFS this Attribute contained little more than the DOS File Permissions and the file
times.

Windows 2000 introduced four new fields which are used to reference Quota, Security, File Size and
Logging information.

As defined in $AttrDef, this attribute has a minimum size of 48 bytes and a maximum of 72 bytes.

2.2. Layout of the Attribute (Resident)

Table 2.2. Layout of the $STANDARD_INFORMATION (0x10) attribute

Offset Size OS Description

~ ~ Standard Attribute Header

0x00 8 C Time - File Creation

0x08 8 A Time - File Altered

0x10 8 M Time - MFT Changed

0x18 8 R Time - File Read

0x20 4 DOS File Permissions

0x24 4 Maximum Number of Versions

0x28 4 Version Number

0x2C 4 Class Id

0x30 4 2K Owner Id

0x34 4 2K Security Id

0x38 8 2K Quota Charged

0x40 8 2K Update Sequence Number (USN)

2.2.1. File Permissions

Also called attributes in DOS terminology.

Table 2.3. File Permissions

Flag Description

0x0001 Read-Only

0x0002 Hidden

0x0004 System

0x0020 Archive

0x0040 Device

0x0080 Normal

0x0100 Temporary

0x0200 Sparse File

0x0400 Reparse Point

NTFS Attributes

8

Flag Description

0x0800 Compressed

0x1000 Offline

0x2000 Not Content Indexed

0x4000 Encrypted

• Maximum Number of Versions

Maximum allowed versions for file. Zero means that version numbering is disabled.

• Version Number

This file's version (if any). Will be zero if Maximum Number of Versions is zero.

• Class Id

Class Id from bidirectional Class Id index.

• Owner Id

Owner Id of the user owning the file. This Id is a key in the $O and $Q Indexes of the file $Quota. If
zero, then quotas are disabled.

• Security Id

This should not be confused with a Security Identifier. The Security Id is a key in the $SII Index and
$SDS Data Stream in the file $Secure.

• Quota Charged

The number of bytes this file user from the user's quota. This should be the total data size of all
streams. If zero, then quotas are disabled.

• Update Sequence Number (USN)

Last Update Sequence Number of the file. This is a direct index into the file $UsnJrnl. If zero, the
USN Journal is disabled.

2.3. Notes

2.3.1. Other Information

If a NTFS volume is upgraded from v1.2 to v3.0, then this attribute won't be upgraded (lengthened) until
it is accesssed.

2.3.2. Questions

Are the Version fields and the Class Id ever used?

3. Attribute - $ATTRIBUTE_LIST (0x20)
3.1. Overview

NTFS Attributes

9

When there are lots of attributes and space in the MFT record is short, all those attributes that can be
made non-resident are moved out of the MFT. If there is still not enough room, then an
$ATTRIBUTE_LIST attribute is needed. The remaining attributes are placed in a new MFT record and
the $ATTRIBUTE_LIST describes where to find them. It is very unusual to see this attribute.

3.2. Layout of the Attribute
After the standard header, this attribute contains a list of variable length records, describing the type and
location (in the MFT) of all the other attributes belonging to this file. Each record is aligned on an 8-byte
boundary.

The list is sorted by:

1. Attribute type

2. Attribute name (if present)

3. Sequence number

N.B. It does not list itself.

Table 2.4. Layout of the $ATTRIBUTE_LIST (0x20) attribute

Offset Size Description

~ ~ Standard Attribute Header

0x00 4 Type

0x04 2 Record length

0x06 1 Name length (N)

0x07 1 Offset to Name (a)

0x08 8 Starting VCN (b)

0x10 8 Base File Reference of the attribute

0x18 2 Attribute Id (c)

0x1A 2N Name in Unicode (if N >0)

(a) If the name doesn't exist, does this point at the attribute or zero?

(b) Starting VCN, or zero if the attribute is resident

(c) Each attribute has a unique identifier

(a) it always points to where the name would be (0x1A)
0x04 record allocation (8 byte alignment)
(c) always seems to be zero, check
(c) no it's only shown the first time for a given attribute type
not sure about sorting by sequence number. VCN definitely

3.3. Notes

3.3.1. $AttrDef

NTFS Attributes

10

It can be either resident or non-resident. This attribute has a no minimum or maximum size.

3.3.2. Other Information

The offset at 0x07 is just one byte long, unusual for an attribute.

If this attribute is non-resident, then the data runs must fit into one MFT record.

The $ATTRIBUTE_LIST may be needed if the file:

• has a large number of hard links (lots of file name attributes present).

• becomes very fragmented, so the data runs overflow the MFT record.

• has a complex security descriptor (not applicable to NTFS v3.0+

• has many named streams, e.g. data streams.

3.3.3. To Do

8 VCN lowest_vcn;
Lowest virtual cluster number of this portion of the attribute value. This is usually 0. It
is non-zero for the case where one attribute does not fit into one mft record and thus
several mft records are allocated to hold this attribute. In the latter case, each mft
record holds one extent of the attribute and there is one attribute list entry for each
extent. NOTE: This is DEFINITELY a signed value! The windows driver uses cmp, followed
by jg when comparing this, thus it treats it as signed.

24 __u16 instance;
If lowest_vcn = 0, the instance of the attribute being referenced; otherwise 0.

The attribute list is used in case where a file need extension FILE records in the
MFT to be fully described, in order to find any file attribute of this file.
This file attribute may be non-resident because its stream is likely to grow.

The extents of one non-resident attribute (if present) immediately follow
after the initial extent. They are ordered by lowest_vcn and have their instance set to zero.

4. Attribute - $FILE_NAME (0x30)
4.1. Overview

This Attribute stores the name of the file attribute anl is always resident.

As defined in $AttrDef, this attribute has a minimum size of 68 bytes and a maximum of 578 bytes. This
equates to a maximum filename length of 255 Unicode characters.

4.2. Layout of the Attribute (Resident)

Table 2.5. Layout of the $FILE_NAME (0x30) attribute

NTFS Attributes

11

Offset Size Description

~ ~ Standard Attribute Header

0x00 8 File reference to the parent directory.

0x08 8 C Time - File Creation

0x10 8 A Time - File Altered

0x18 8 M Time - MFT Changed

0x20 8 R Time - File Read

0x28 8 Allocated size of the file

0x30 8 Real size of the file

0x38 4 Flags, e.g. Directory, compressed, hidden

0x3c 4 Used by EAs and Reparse

0x40 1 Filename length in characters (L)

0x41 1 Filename namespace 0x42 2L File name in Unicode (not null ter-
minated)

4.2.1. File Reference

This is a File Reference to the base record of the parent directory.

4.2.2. File Size

The allocated size of a file is the amount of disk space the file is taking up. It will be a multiple of the
cluster size. The real size of the file is the size of the unnamed data attribute. This is the number that will
appear in a directory listing.

N.B. The Real Size is only present if the Starting VCN is zero. See the Standard Attribute Header for
more information.

4.2.3. Flags

Table 2.6. File Flags

Flag Description

0x0001 Read-Only

0x0002 Hidden

0x0004 System

0x0020 Archive

0x0040 Device

0x0080 Normal

0x0100 Temporary

0x0200 Sparse File

0x0400 Reparse Point

0x0800 Compressed

0x1000 Offline

0x2000 Not Content Indexed

0x4000 Encrypted

NTFS Attributes

12

Flag Description

0x10000000 Directory (copy from corresponding bit in MFT record)

0x20000000 Index View (copy from corresponding bit in MFT record)

4.3. Notes

4.3.1. Other Information

NTFS implements POSIX-style Hard Links by creating a file with several Filename Attributes. Each Fi-
lename Attribute has its own details and parent. When a Hard Linked file is deleted, its filename is re-
moved from the MFT Record. When the last link is removed, then the file is really deleted.

N.B. All fields, except the parent directory, are only updated when the filename is changed. Until then,
they just become out of date. $STANDARD_INFORMATION Attribute, however, will always be kept
up-to-date.

N.B. If the file has EAs (Extended Attributes), then the EA Field will contain the size of buffer needed.

N.B. If the file is a Reparse Point, then the Reparse Field will give its type.

5. Attribute - $OBJECT_ID (0x40)
5.1. Overview

The Object Id was introduced in Windows 2000. Every MFT Record is assigned a unique GUID. Addi-
tionally, a record may have a Birth Volume Id, a Birth Object Id and a Domain Id, all of which are
GUIDs.

As defined in $AttrDef, this attribute has a no minimum size but a maximum of 256 bytes.

5.2. Layout of the Attribute

Table 2.7. Layout of the $OBJECT_ID (0x40) attribute

Offset Size Name Description

~ ~ Standard Attribute Header

0x00 16 GUID Object Id Unique Id assigned to file

0x10 16 GUID Birth Volume Id Volume where file was created

0x20 16 GUID Birth Object Id Original Object Id of file

0x30 16 GUID Domain Id Domain in which object was created

5.2.1. Birth Volume Id

Birth Volume Id is the Object Id of the Volume on which the Object Id was allocated. It never changes.

5.2.2. Birth Object Id

Birth Object Id is the first Object Id that was ever assigned to this MFT Record. I.e. If the Object Id is
changed for some reason, this field will reflect the original value of the Object Id.

NTFS Attributes

13

5.2.3. Domain Id

Domain Id is currently unused but it is intended to be used in a network environment where the local
machine is part of a Windows 2000 Domain. This may be used in a Windows 2000 Advanced Server
managed domain.

5.3. Notes

5.3.1. Other Information

This Attribute may be just 16 bytes long (the size of one GUID).

Even if the Birth Volume, Birth Object and Domain Ids are not used, they may be present, but one or
more may be zero.

Need examples where all the fields are used.

6. Attribute - $SECURITY_DESCRIPTOR (0x50)
6.1. Overview

Standard Attribute Header?

The security descriptor can be summarised as:

• A header (may be flags), followed by one or two ACLs and two SIDs.

• The first ACL contains auditing information and may be absent.

• The second ACL contains permissions (who can do what).

• Each ACL contains one or many ACEs.

• Each ACE contains a SID.

• The last two SIDs show the owner of the object (User and Group)

Table 2.8. Layout of the $SECURITY_DESCRIPTOR (0x50) attribute

Component Description

Header Offsets to various structures

Audit ACL ACE SID ACEs for the Audit ACL

Permissions ACL ACE SID ACEs for the Permissions ACL

ACE SID

ACE SID

SID (User) The owner of this object

SID (Group)

NTFS Attributes

14

The security descriptor is necessary to prevent unauthorised access to files. It stores information about:

• The owner of the file

• Permissions the owner has granted to other users

• What actions should be logged (auditing)

6.2. Layout of the Attribute

6.2.1. Notes

6.2.1.1. Size

As defined in $AttrDef, this attribute has a no minimum or maximum size.

6.3. Layout of the stream

6.3.1. Questions

• How are the ACEs of directories inherited?

• How can we fit the ACEs into a normal looking Unix file system?

• How can we tie the file permissions into PAM or SMB?

• Can we use NT authentication, somehow?

6.3.2. To Do

• Decide which Standard, and Specific, Rights relate to which filesystem activities, e.g.
FILE_APPEND_DATA will allow a user to extend a file, but not create one.

• Experiment to see if the zeros we see are padding and that the flag-like fields are flags.

• Experiment with the Generic Read / Write / Execute / All flags.

6.3.3. Header

Table 2.9. Layout of the $SECURITY_DESCRIPTOR (0x50) attribute header

Offset Size Description

0x00 1 Revision (a)

0x01 1 Padding

0x02 2 Control Flags (b)

0x04 4 Offset to User SID

0x08 4 Offset to Group SID

NTFS Attributes

15

Offset Size Description

0x0C 4 Offset to SACL

0x10 4 Offset to DACL

(a) 0x1 for now

(b) Usually 0x4 (DACL Present), or 0x14 (DACL Present + SACL Present). See Flags below.

(c) This refers to the Auditing ACL

(d) This refers to the Permissions ACL

6.4. ACL

Table 2.10. Layout of an ACL

Offset Size Description

0x00 1 ACL Revision

0x01 1 Padding (0x00)

0x02 2 ACL size

0x04 2 ACE count

0x06 2 Padding (0x0000)

The Access Control List (ACL) contains one or many ACEs.

The ACL revision is currently 0x02, on my machine.

The Win32 APIs suggest that 0x01 and 0x06 contain padding 0x00's for alignment purposes.

6.5. ACE

Table 2.11. Layout of an ACE

Offset Size Description

0x00 1 Type

0x01 1 Flags

0x02 2 Size

0x04 4 Access mask

0x08 V SID

6.5.1. Types

The currently implemented (in NT) Types are:

Table 2.12. ACE types

NTFS Attributes

16

Value Description

0x00 Access Allowed

0x01 Access Denied

0x02 System Audit

6.5.2. Flags

Flags is a bit field. The possible values of Flags depend on the value of Type. When applied to a direct-
ory, Access Allowed or Access Denied can have flags of

Table 2.13. ACE flags

Value Description

0x01 Object inherits ACE

0x02 Container inherits ACE

0x04 Don't propagate 'Inherit ACE'

0x08 Inherit only ACE

If the Type is System Audit, then the flags can be

Table 2.14. ACE audit flags

Value Description

0x40 Audit on Success

0x80 Audit on Failure

6.5.3. Access Mask / Access Rights

The Access Mask / Rights is a bit field enumerating all the (dis)allowed actions.

Table 2.15. ACE access mask

Bit(Range) Meaning Description / Examples

0 - 15 Object Specific Access Rights Read data, Execute, Append data

16 - 22 Standard Access Rights Delete, Write ACL, Write Owner

23 Can access security ACL

24 - 27 Reserved

28 Generic ALL (Read, Write, Execute) Everything below

29 Generic Execute All things necessary to execute a pro-
gram

30 Generic Write All things necessary to write to a file

31 Generic Read All things necessary to read a file

NTFS Attributes

17

6.6. SID (Security Identifier)
A typical SID looks like: S-1-5-21-646518322-1873620750-619646970-1110

It's composed of 'S-p-q-r-s-t-u-v'

Table 2.16. SID contents

S Security

p Revision number (currently 1)

q NT Authority. This number is divided into 6 bytes (48 bit big-endian number).

r-v NT Sub-authorities (there can be many of these)

On disk the SID is stored as follows:

in dec: S-1-5-21-646518322-1873620750-619646970-1110

in hex: S-1-5-15-26891632-6fad2f0e-24ef0ffa-456 (5 Sub-authorities)

Table 2.17. SID example

0x00 01 05 00 00 00 00 00 05

0x08 15 00 00 00 32 16 89 26

0x10 0e 2f ad 6f fa 0f ef 24

0x18 56 04 00 00

NB This is a variable length structure. The could have been more, or fewer, sub-authorities making the
structure larger, or smaller.

6.6.1. Security Descriptor Control Flags

Table 2.18. Security Descriptor Control Flags

Flag Description

0x0001 Owner Defaulted

0x0002 Group Defaulted

0x0004 DACL Present

0x0008 DACL Defaulted

0x0010 SACL Present

0x0020 SACL Defaulted

0x0100 DACL Auto Inherit Req

0x0200 SACL Auto Inherit Req

0x0400 DACL Auto Inherited

0x0800 SACL Auto Inherited

0x1000 DACL Protected

0x2000 SACL Protected

NTFS Attributes

18

Flag Description

0x4000 RM Control Valid

0x8000 Self Relative

6.6.1.1. OWNER DEFAULTED

This boolean flag, when set, indicates that the SID pointed to by the Owner field was provided by a de-
faulting mechanism rather than explicitly provided by the original provider of the security descriptor.
This may affect the treatment of the SID with respect to inheritence of an owner.

6.6.1.2. GROUP DEFAULTED

This boolean flag, when set, indicates that the SID in the Group field was provided by a defaulting
mechanism rather than explicitly provided by the original provider of the security descriptor. This may
affect the treatment of the SID with respect to inheritence of a primary group.

6.6.1.3. DACL PRESENT

This boolean flag, when set, indicates that the security descriptor contains a discretionary ACL. If this
flag is set and the Dacl field of the SECURITY DESCRIPTOR is null, then a null ACL is explicitly be-
ing specified.

6.6.1.4. DACL DEFAULTED

This boolean flag, when set, indicates that the ACL pointed to by the Dacl field was provided by a de-
faulting mechanism rather than explicitly provided by the original provider of the security descriptor.
This may affect the treatment of the ACL with respect to inheritence of an ACL. This flag is ignored if
the DaclPresent flag is not set.

6.6.1.5. SACL PRESENT

This boolean flag, when set, indicates that the security descriptor contains a system ACL pointed to by
the Sacl field. If this flag is set and the Sacl field of the SECURITY DESCRIPTOR is null, then an
empty (but present) ACL is being specified.

6.6.1.6. SACL DEFAULTED

This boolean flag, when set, indicates that the ACL pointed to by the Sacl field was provided by a de-
faulting mechanism rather than explicitly provided by the original provider of the security descriptor.
This may affect the treatment of the ACL with respect to inheritence of an ACL. This flag is ignored if
the SaclPresent flag is not set.

6.6.1.7. SELF RELATIVE

This boolean flag, when set, indicates that the security descriptor is in self-relative form. In this form, all
fields of the security descriptor are contiguous in memory and all pointer fields are expressed as offsets
from the beginning of the security descriptor.

The SID structure is a variable-length structure used to uniquely identify
users or groups. SID stands for security identifier.

The standard textual representation of the SID is of the form:
S-R-I-S-S...

Where:
- The first "S" is the literal character 'S' identifying the following
digits as a SID.

NTFS Attributes

19

- R is the revision level of the SID expressed as a sequence of digits
either in decimal or hexadecimal (if the later, prefixed by "0x").
- I is the 48-bit identifier_authority, expressed as digits as R above.
- S... is one or more sub_authority values, expressed as digits as above.

Example SID; the domain-relative SID of the local Administrators group on
Windows NT/2k:

S-1-5-32-544

This translates to a SID with:
revision = 1,
sub_authority_count = 2,
identifier_authority = {0,0,0,0,0,5}, SECURITY_NT_AUTHORITY
sub_authority[0] = 32, SECURITY_BUILTIN_DOMAIN_RID
sub_authority[1] = 544 DOMAIN_ALIAS_RID_ADMINS

ACE Types
ACCESS_MIN_MS_ACE_TYPE = 0
ACCESS_ALLOWED_ACE_TYPE = 0
ACCESS_DENIED_ACE_TYPE = 1
SYSTEM_AUDIT_ACE_TYPE = 2
SYSTEM_ALARM_ACE_TYPE = 3 Not implemented as of Win2k.
ACCESS_MAX_MS_V2_ACE_TYPE = 3

ACCESS_ALLOWED_COMPOUND_ACE_TYPE = 4
ACCESS_MAX_MS_V3_ACE_TYPE = 4

The following are Win2k only.
ACCESS_MIN_MS_OBJECT_ACE_TYPE = 5
ACCESS_ALLOWED_OBJECT_ACE_TYPE = 5
ACCESS_DENIED_OBJECT_ACE_TYPE = 6
SYSTEM_AUDIT_OBJECT_ACE_TYPE = 7
SYSTEM_ALARM_OBJECT_ACE_TYPE = 8
ACCESS_MAX_MS_OBJECT_ACE_TYPE = 8

ACCESS_MAX_MS_V4_ACE_TYPE = 8

This one is for WinNT&2k.
ACCESS_MAX_MS_ACE_TYPE = 8

The ACE flags (8-bit) for audit and inheritance

SUCCESSFUL_ACCESS_ACE_FLAG is only used with system audit and alarm ACE
types to indicate that a message is generated (in Windows!) for successful
accesses.

FAILED_ACCESS_ACE_FLAG is only used with system audit and alarm ACE types
to indicate that a message is generated (in Windows!) for failed accesses.

The inheritance flags.
OBJECT_INHERIT_ACE = 0x01
CONTAINER_INHERIT_ACE = 0x02
NO_PROPAGATE_INHERIT_ACE = 0x04
INHERIT_ONLY_ACE = 0x08
INHERITED_ACE = 0x10 Win2k only
VALID_INHERIT_FLAGS = 0x1f

The audit flags.
SUCCESSFUL_ACCESS_ACE_FLAG = 0x40
FAILED_ACCESS_ACE_FLAG = 0x80

The access mask defines the access rights.

The standard rights.

NTFS Attributes

20

DELETE = 0x00010000
READ_CONTROL = 0x00020000
WRITE_DAC = 0x00040000
WRITE_OWNER = 0x00080000
SYNCHRONIZE = 0x00100000

STANDARD_RIGHTS_REQUIRED = 0x000f0000

STANDARD_RIGHTS_READ = 0x00020000
STANDARD_RIGHTS_WRITE = 0x00020000
STANDARD_RIGHTS_EXECUTE = 0x00020000

STANDARD_RIGHTS_ALL = 0x001f0000

The access system ACL and maximum allowed access types.
ACCESS_SYSTEM_SECURITY = 0x01000000
MAXIMUM_ALLOWED = 0x02000000

The generic rights.
GENERIC_ALL = 0x10000000
GENERIC_EXECUTE = 0x20000000
GENERIC_WRITE = 0x40000000
GENERIC_READ = 0x80000000

The object ACE flags (32-bit).
ACE_OBJECT_TYPE_PRESENT = 1
ACE_INHERITED_OBJECT_TYPE_PRESENT = 2

ACL_CONSTANTS
Current revision.
ACL_REVISION = 2
ACL_REVISION_DS = 4

History of revisions.
ACL_REVISION1 = 1
MIN_ACL_REVISION = 2
ACL_REVISION2 = 2
ACL_REVISION3 = 3
ACL_REVISION4 = 4
MAX_ACL_REVISION = 4

Absolute security descriptor. Does not contain the owner and group SIDs, nor
the sacl and dacl ACLs inside the security descriptor. Instead, it contains
pointers to these structures in memory. Obviously, absolute security
descriptors are only useful for in memory representations of security
descriptors. On disk, a self-relative security descriptor is used.

Attribute: Security descriptor (0x50). A standard self-relative security
descriptor.

NOTE: Always resident.
NOTE: Not used in NTFS 3.0+, as security descriptors are stored centrally
in FILE_$Secure and the correct descriptor is found using the security_id
from the standard information attribute.

On NTFS 3.0+, all security descriptors are stored in FILE_$Secure. Only one
referenced instance of each unique security descriptor is stored.

FILE_$Secure contains no unnamed data attribute, i.e. it has zero length. It
does, however, contain two indexes ($SDH and $SII) as well as a named data
stream ($SDS).

Every unique security descriptor is assigned a unique security identifier
(security_id, not to be confused with a SID). The security_id is unique for

NTFS Attributes

21

the NTFS volume and is used as an index into the $SII index, which maps
security_ids to the security descriptor's storage location within the $SDS
data attribute. The $SII index is sorted by ascending security_id.

A simple hash is computed from each security descriptor. This hash is used
as an index into the $SDH index, which maps security descriptor hashes to
the security descriptor's storage location within the $SDS data attribute.
The $SDH index is sorted by security descriptor hash and is stored in a B+
tree. When searching $SDH (with the intent of determining whether or not a
new security descriptor is already present in the $SDS data stream), if a
matching hash is found, but the security descriptors do not match, the
search in the $SDH index is continued, searching for a next matching hash.

When a precise match is found, the security_id coresponding to the security
descriptor in the $SDS attribute is read from the found $SDH index entry and
is stored in the $STANDARD_INFORMATION attribute of the file/directory to
which the security descriptor is being applied. The $STANDARD_INFORMATION
attribute is present in all base mft records (i.e. in all files and
directories).

If a match is not found, the security descriptor is assigned a new unique
security_id and is added to the $SDS data attribute. Then, entries
referencing the this security descriptor in the $SDS data attribute are
added to the $SDH and $SII indexes.

Note: Entries are never deleted from FILE_$Secure, even if nothing
references an entry any more.

The $SDS data stream contains the security descriptors, aligned on 16-byte
boundaries, sorted by security_id in a B+ tree. Security descriptors cannot
cross 256kib boundaries (this restriction is imposed by the Windows cache
manager). Each security descriptor is contained in a SDS_ENTRY structure.
Also, each security descriptor is stored twice in the $SDS stream with a
fixed offset of 0x40000 bytes (256kib, the Windows cache manager's max size)
between them; i.e. if a SDS_ENTRY specifies an offset of 0x51d0, then the
the first copy of the security descriptor will be at offset 0x51d0 in the
$SDS data stream and the second copy will be at offset 0x451d0.

$SII index. The collation type is COLLATION_NTOFS_ULONG.
$SDH index. The collation rule is COLLATION_NTOFS_SECURITY_HASH.

7. Attribute - $VOLUME_NAME (0x60)
7.1. Overview

This attribute simply contains the name of the volume.

As defined in $AttrDef, this attribute has a minimum size of 2 bytes and a maximum of 256 bytes. This
equates to a maximum volume name length of 127 Unicode characters.

7.2. Layout of the Attribute

Table 2.19. Layout of the $VOLUME_NAME (0x60) attribute

Offset Size Description

~ ~ Standard Attribute Header

NTFS Attributes

22

Offset Size Description

0x00 Unicode name

7.3. Notes
The Volume Name is not terminated with a Unicode NULL. Its name's length is the size of the attribute
as stored in the header.

A Volume's Serial Number is stored in $Boot.

8. Attribute - $VOLUME_INFORMATION (0x70)
8.1. Overview

Indicates the version and the state of the volume.

As defined in $AttrDef, this attribute has a minimum and a maximum size of 12 bytes.

8.2. Layout of the Attribute

Table 2.20. Layout of the $VOLUME_INFORMATION (0x70) attribute

Offset Size Description

~ ~ Standard Attribute Header

0x00 8 Always zero?

0x08 1 Major version number

0x09 1 Minor version number

0x0A 2 Flags

0x0C 4 Always zero?

8.2.1. Flags

Table 2.21. Volume Flags

Value Description

0x0001 Dirty

0x0002 Resize LogFile

0x0004 Upgrade on Mount

0x0008 Mounted on NT4

0x0010 Delete USN underway

0x0020 Repair Object Ids

0x8000 Modified by chkdsk

NTFS Attributes

23

8.3. Notes

8.3.1. Dirty Flag

When the Dirty Flag is set, Windows NT must perform the chkdsk/F command on the volume when it
next boots.

8.3.2. Version numbers

Table 2.22. Volume Version Numbers

Operating System Version

Windows NT 1.2

Windows 2000 3.0

Windows XP 3.1

8.3.3. Other Information

A Volume's Serial Number is stored in $Boot.

9. Attribute - $DATA (0x80)
9.1. Overview

This Attribute contains the file's data. A file's size is the size of its unnamed Data Stream.

As defined in $AttrDef, this attribute has a no minimum or maximum size.

9.2. Layout of the Attribute

Table 2.23. Layout of the $DATA (0x80) attribute

Offset Size Description

~ ~ Standard Attribute Header

0x00 Any data

9.3. Notes

9.3.1. Common Data Stream Used By Windows

• [Unnamed]

• {4c8cc155-6c1e-11d1-8e41-00c04fb9386d}

• ^EDocumentSummaryInformation

NTFS Attributes

24

• ^ESebiesnrMkudrfcoIaamtykdDa

• ^ESummaryInformation

• $MountMgrDatabase

• $Bad

• $SDS

• $J

• $Max

9.3.2. Other Information

Usually, a directory has no Data Attribute, and the Data Attribute of a file has no name.

must have (at least empty) unnamed data attr

NTFS has an advantage: as you can have several data attributes for a file, you can easily implement HFS
whose files are made of two parts (also called forks in the HFS terminology): a resource part and a data
part. For the data part, you use default unnamed data attribute, and for the resource part, you use a data
attribute named e.g. 'resource'.

10. Attribute - $INDEX_ROOT (0x90)
10.1. Overview

This is the root node of the B+ tree that implements an index (e.g. a directory). This file attribute is al-
ways resident.

Always resident.

10.2. Layout of the Attribute

link up below

$INDEX_ROOT

• Standard Attribute Header

• Index Root

• Index Header

• Index Entry

NTFS Attributes

25

• Index Entry

• ...

10.2.1. Index Root

Table 2.24. Layout of the $INDEX_ROOT (0x90) attribute: an Index Root

Offset Size Description

~ ~ Standard Attribute Header

0x00 4 Attribute Type

0x04 4 Collation Rule

0x08 4 Size of Index Allocation Entry (bytes)

0x0C 1 Clusters per Index Record

0x0D 3 Padding (Align to 8 bytes)

10.2.2. Index Header

Table 2.25. Layout of the $INDEX_ROOT (0x90) attribute: an Index Header

Offset Size Description

0x00 4 Offset to first Index Entry

0x04 4 Total size of the Index Entries

0x08 4 Allocated size of the Index Entries

0x0C 1 Flags

0x0D 3 Padding (align to 8 bytes)

10.2.3. Flags

Table 2.26. Index flags

Flag Description

0x00 Small Index (fits in Index Root)

0x01 Large index (Index Allocation needed)

silly to have a flag of 0x00, remove

The large index flag indicates whether the file attributes index allocation and bitmap are present (when
the index is small enough to be stored completely in the root node, these two file attributes are missing).

10.3. Notes

NTFS Attributes

26

10.3.1. Size

As defined in $AttrDef, this attribute has a no minimum or maximum size.

10.3.2. Sequence of index entries

This is a sequence of index entries that has a variable length. The sequence is terminated with a special
index entry whose last entry flag is set.

This is the header for indexes, describing the INDEX_ENTRY records, which
follow the INDEX_HEADER. Together the index header and the index entries
make up a complete index.

This is followed by a sequence of index entries (INDEX_ENTRY structures)
as described by the index header.

When a directory is small enough to fit inside the index root then this
is the only attribute describing the directory. When the directory is too
large to fit in the index root, on the other hand, two aditional attributes
are present: an index allocation attribute, containing sub-nodes of the B+
directory tree (see below), and a bitmap attribute, describing which virtual
cluster numbers (vcns) in the index allocation attribute are in use by an
index block.

NOTE: The root directory (FILE_$root) contains an entry for itself.

struct {
ATTR_TYPES type;
Type of the indexed attribute. Is $FILENAME for directories, zero
for view indexes. No other values allowed.
COLLATION_RULES collation_rule; Collation rule used to sort the
index entries. If type is $FILENAME, this must be COLLATION_FILENAME.

__u32 bytes_per_index_block;
Byte size of each index block (in the index allocation attribute).

__u8 clusters_per_index_block;
Cluster size of each index block (in the index allocation attribute), when
an index block is >= than a cluster, otherwise this will be the log of
the size (like how the encoding of the mft record size and the index
record size found in the boot sector work). Has to be a power of 2.

} INDEX_ROOT;

10.4. List of Common Indexes

Table 2.27. Common Indexes

Name Index Of Used By

$I30 Filenames Directories

$SDH Security Descriptors $Secure

$SII Security Ids $Secure

$O Object Ids $ObjId

$O Owner Ids $Quota

$Q Quotas $Quota

NTFS Attributes

27

Name Index Of Used By

$R Reparse Points $Reparse

which elements are shared between indexes?
not relevant for index root

11. Attribute - $INDEX_ALLOCATION (0xA0)
11.1. Overview

This is the basic component of an index (e.g. a directory). This is the storage location for all sub-nodes
of the B+ tree that implements an index (e.g. a directory). This file attribute is always non-resident.

As defined in $AttrDef, this attribute has a no minimum or maximum size.

this attribute is never resident - would use index root instead

11.2. Layout of the Attribute
It is simply a sequence of all index buffers that belong to the index.

Table 2.28. Layout of the $INDEX_ALLOCATION (0xA0) attribute

Offset Size Description

~ ~ Standard Attribute Header

0x00 ... Data runs

11.2.1. Index Entry

split into two tables, at least

Table 2.29. Layout of a data entry in the $INDEX_ALLOCATION (0xA0)
attribute

Offset Size Description

~ ~ Standard Attribute Header

The next field is only valid when the last entry flag is not set

0x00 8 File reference

0x08 2 L = Length of the index entry

0x0A 2 M = Length of the stream

NTFS Attributes

28

Offset Size Description

0x0C 1 Flags

The next field is only present when the last entry flag is not set

0x10 M Stream

The next field is only present when the sub-node flag is set

L - 8 8 VCN of the sub-node in the index allocation attribute

11.2.2. Flags

Table 2.30. Data entry flags

Flag Description

0x01 Index entry points to a sub-node

0x02 Last index entry in the node

The last entry flag is used to indicate the end of a sequence of index entries. Although it does not repres-
ent a valid file, it can point to a sub-node.

11.3. Notes

11.3.1. Length of the stream

A copy of the field at offset 10 in the header part of the resident file attribute indexed by the index entry.
But why the hell haven't these 2 fields the same size?

11.3.2. Stream

A copy of the stream of the resident file attribute indexed by the index entry (e.g. for a directory, the file
name attribute).

Always non-resident (doesn't make sense to be resident anyway!).

This is an array of index blocks. Each index block starts with an
INDEX_BLOCK structure containing an index header, followed by a sequence of
index entries (INDEX_ENTRY structures), as described by the INDEX_HEADER.

When creating the index block, we place the update sequence array at this
offset, i.e. before we start with the index entries. This also makes sense,
otherwise we could run into problems with the update sequence array
containing in itself the last two bytes of a sector which would mean that
multi sector transfer protection wouldn't work. As you can't protect data
by overwriting it since you then can't get it back...
When reading use the data from the ntfs record header.

12. Attribute - $BITMAP (0xB0)
12.1. Overview

NTFS Attributes

29

This file attribute is a sequence of bits, each of which represents the status of an entity.

As defined in $AttrDef, this attribute has a no minimum or maximum size.

12.2. Layout of the Attribute
This attribute is currently used in two places: indexes (e.g. directories), $MFT. N.B. The index entries
and the FILE records also have flags in them to show if they are in use or not.

In an index, the bit field shows which index entries are in use. Each bit represents one VCN of the index
allocation.

In the $MFT, the bit field shows which FILE records are in use.

Table 2.31. Layout of the $BITMAP (0xB0) attribute

Offset Size Description

~ ~ Standard Attribute Header

0x00 Bit field

13. Attribute - $REPARSE_POINT (0xC0)
13.1. Overview

As defined in $AttrDef, this attribute has a no minimum size but a maximum of 16384 bytes.

13.2. Layout of the Attribute (Microsoft Reparse Point)

Table 2.32. Layout of the $REPARSE_POINT (0xC0) attribute (Microsoft
Reparse Point)

Offset Size Description

~ ~ Standard Attribute Header

0x00 4 Reparse Type (and Flags)

0x04 2 Reparse Data Length

0x06 2 Padding (align to 8 bytes)

0x08 V Reparse Data (a)

13.3. Layout of the Attribute (Third-Party Reparse Point)

Table 2.33. Layout of the $REPARSE_POINT (0xC0) attribute (Third-Party
Reparse Point)

Offset Size Description

~ ~ Standard Attribute Header

NTFS Attributes

30

Offset Size Description

0x00 4 Reparse Type (and Flags)

0x04 2 Reparse Data Length

0x06 2 Padding (align to 8 bytes)

0x08 16 Reparse GUID

0x18 V Reparse Data (a)

(a) The structure of the Reparse Data depends on the Reparse Type. There are
three defined Reparse Data (SymLinks, VolLinks and RSS) + the Generic Reparse.

13.3.1. Symbolic Link Reparse Data

Table 2.34. Symbolic Link Reparse Data

Offset Size Description

0x00 2 Substitute Name Offset

0x02 2 Substitute Name Length

0x04 2 Print Name Offset

0x08 2 Print Name Length

0x10 V Path Buffer

13.3.2. Volume Link Reparse Data

Table 2.35. Volume Link Reparse Data

Offset Size Description

0x00 2 Substitute Name Offset

0x02 2 Substitute Name Length

0x04 2 Print Name Offset

0x08 2 Print Name Length

0x10 V Path Buffer

13.3.3. Reparse Tag Flags

These are just the predefined reparse flags

Table 2.36. Reparse Tag Flags

Flag Description

0x20000000 Is alias

0x40000000 Is high latency

0x80000000 Is Microsoft

NTFS Attributes

31

Flag Description

0x68000005 NSS

0x68000006 NSS recover

0x68000007 SIS

0x68000008 DFS

0x88000003 Mount point

0xA8000004 HSM

0xE8000000 Symbolic link

13.4. Notes

13.4.1. Other Information

The reparse point tag defines the type of the reparse point. It also
includes several flags, which further describe the reparse point.

The reparse point tag is an unsigned 32-bit value divided in three parts:

1. The least significant 16 bits (i.e. bits 0 to 15) specifiy the type of
the reparse point.

2. The 13 bits after this (i.e. bits 16 to 28) are reserved for future use.
3. The most significant three bits are flags describing the reparse point.

They are defined as follows:
bit 29: Name surrogate bit. If set, the filename is an alias for

another object in the system.
bit 30: High-latecny bit. If set, accessing the first byte of data will

be slow. (E.g. the data is stored on a tape drive.)
bit 31: Microsoft bit. If set, the tag is owned by Microsoft. User

defined tags have to use zero here.

The system file FILE_$Extend/$Reparse contains an index named $R listing
all reparse points on the volume. The index entry keys are as defined
below. Note, that there is no index data associated with the index entries.

The index entries are sorted by the index key file_id. The collation rule is
COLLATION_NTOFS_ULONGS. FIXME: Verify whether the reparse_tag is not the
primary key / is not a key at all. (AIA)

14. Attribute - $EA_INFORMATION (0xD0)
14.1. Overview

Used to implement under NTFS the HPFS extended attributes used by the information subsystem of OS/
2 and OS/2 clients of Windows NT servers. This file attribute may be non-resident because its stream is
likely to grow.

As defined in $AttrDef, this attribute has a minimum and a maximum size of 8 bytes.

14.2. Layout of the Attribute

NTFS Attributes

32

Table 2.37. Layout of the $EA_INFORMATION (0xD0) attribute

Offset Size Description

~ ~ Standard Attribute Header

0x00 2 Size of the packed Extended Attributes

0x02 2 Number of Extended Attributes which have NEED_EA set

0x04 4 Size of the unpacked Extended Attributes

15. Attribute - $EA (0xE0)
15.1. Overview

Used to implement the HPFS extended attribute under NTFS. This file attribute may be non-resident be-
cause its stream is likely to grow.

As defined in $AttrDef, this attribute has a no minimum size but a maximum of 65536 bytes.

15.2. Layout of the Attribute
The Extended Attribute is a collection of name, value pairs.

Table 2.38. Layout of the $EA (0xE0) attribute

Offset Size Description

~ ~ Standard Attribute Header

0x00 4 Offset to next Extended Attribute

0x04 1 Flags

0x05 1 Name Length (N)

0x06 2 Value Length (V)

0x08 N Name

N+0x08 V Value

Conversely, the Offset to next EA is the size of this EA.

15.2.1. Flags

Table 2.39. EA flags

Value Description

0x80 Need EA

15.3. Notes

NTFS Attributes

33

15.3.1. Other Information

What is the role and the layout of the stream of this file attribute? It could be valuable to have a look at
HPFS documentation.

15.3.2. Questions

Is it true that the EA name is not unicode?

16. Attribute - $LOGGED_UTILITY_STREAM
(0x100)
16.1. Overview

As defined in $AttrDef, this attribute has a no minimum size but a maximum of 65536 bytes.

16.2. Layout of the Attribute
As an attribute it's no different to a named data attribute
Contents depend on the name of the $DATA stream

Table 2.40. Layout of the $LOGGED_UTILITY_STREAM (0x100) attribute

Offset Size Description

~ ~ Standard Attribute Header

0x00 Any data

16.3. Notes

16.3.1. Other Information

Information needed

Operations on this attribute are logged to the journal ($LogFile) like
normal metadata changes.

Used by the Encrypting File System (EFS). All encrypted files have this
attribute with the name $EFS.

Can be anything the creator chooses.
EFS uses it as follows:
FIXME: Type this info, verifying it along the way. (AIA)

NTFS Attributes

34

Chapter 3. NTFS Files
1. Overview

Everything on an NTFS volume is a file. There are two categories: Metadata and Normal. The Metadata
files contain information about the volume and the Normal files contain your data.

1.1. Layout of the Volume
Below is a table of files found on a Win2K volume (Key).

Table 3.1. Layout of files on the Volume

Inode Filename OS Description

0 $MFT Master File Table - An index of every file

1 $MFTMirr A backup copy of the first 4 records of the MFT

2 $LogFile Transactional logging file

3 $Volume Serial number, creation time, dirty flag

4 $AttrDef Attribute definitions

5 . (dot) Root directory of the disk

6 $Bitmap Contains volume's cluster map (in-use vs. free)

7 $Boot Boot record of the volume

8 $BadClus Lists bad clusters on the volume

9 $Quota NT Quota information

9 $Secure 2K Security descriptors used by the volume

10 $UpCase Table of uppercase characters used for collating

11 $Extend 2K A directory: $ObjId, $Quota, $Reparse, $UsnJrnl

12-15 <Unused> Marked as in use but empty

16-23 <Unused> Marked as unused

Any $ObjId 2K Unique Ids given to every file

Any $Quota 2K Quota information

Any $Reparse 2K Reparse point information

Any $UsnJrnl 2K Journalling of Encryption

>24 A_File An ordinary file

>24 A_Dir An ordinary directory

...

1.2. Notes

1.2.1. Unused Inodes

On a freshly formatted volume, inodes 0x0B to 0x0F are marked as in use, but empty. Inodes 0x10 to
0x17 are marked as free and not used. This doesn't change until the volume is under a lot of stress.

35

When the $MFT becomes very fragmented it won't fit into one FILE Record and an extension record is
needed. If a new record was simply allocated at the end of the $MFT then we encounter a problem. The
$DATA Attribute describing the location of the new record is in the new record.

The new records are therefore allocated from inode 0x0F, onwards. The $MFT is always a minimum of
16 FILE Records long, therefore always exists. After inodes 0x0F to 0x17 are used up, higher, unre-
served, inodes are used.

This effect may not be limited to the $MFT, but more evidence is needed.

1.2.2. Other Information

For some reason $ObjId, $Quota, $Reparse and $UsnJrnl don't have inode numbers below 24, like the
rest of the Metadata files.

Also, the sequence number for each of the system files is always equal to their mft record number and it
is never modified.

2. NTFS Files: $MFT (0)
2.1. Overview

In NTFS, everything on disk is a file. Even the metadata is stored as a set of files.

The Master File Table (MFT) is an index of every file on the volume. For each file, the MFT keeps a set
of records called attributes and each attribute stores a different type of information.

2.2. $MFT Attributes

Table 3.2. $MFT Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $MFT

0x80 $DATA [Unnamed]

0xB0 $BITMAP [Unnamed]

2.3. Layout of the File

2.3.1. Unnamed Data Stream

The description of each file is packed into FILE records.

If one record is not large enough (this is unusual), then an $ATTRIBUTE_LIST attribute is needed.

The first 24 FILE records are reserved for the system files. For a full list see the Files page.

Table 3.3. Sample records from the beginning of $MFT

NTFS Files

36

Inode Filename Description

0 $MFT Master File Table - An index of every file

1 $MFTMirr A backup copy of the first 4 records of the MFT

2 $LogFile Transactional logging file

3 $Volume Serial number, creation time, dirty flag

...

2.4. Notes

2.4.1. MFT Zone

To prevent the MFT becoming fragmented, Windows maintains a buffer around it. No new files will be
created in this buffer region until the other disk space is used up. The buffer size is configurable and can
be 12.5%, 25%, 37.5% or 50% of the disk. Each time the rest of the disk becomes full, the buffer size is
halved.

2.4.2. Other Information

The MFT is self-referencing.

The MFT has some space reserved for future expansion. MFT records 12 - 15 are marked as in use, but
are empty. MFT records 16 - 23 are marked as not in use, however they are never used.

Under Windows, the MFT cannot shrink whilst the system is running.

3. NTFS Files: $MFTMirr (1)
3.1. Overview

This is a system file that duplicates at least the first four FILE records of the MFT for recovery purposes.

If the cluster size of the volume is less than or equal to four times the mft record size, i.e. usually the
cluster size is less than or equal to 4096 bytes, then the first four MFT records are stored in the
$MFTMirr.

If the cluster size is greater than four times the mft record size, then the size of $MFTMirr is one cluster
and as many MFT records are stored in it as fit inside a cluster.

For example given an MFT record size of 1024 bytes and a cluster size of 8192 bytes the $MFTMirr
would be 8192 bytes long and it would contain the first eight FILE records of the MFT.

3.2. $MFTMirr Attributes

Table 3.4. $MFTMirr Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $MFTMirr

0x80 $DATA [Unnamed]

NTFS Files

37

3.3. Layout of the File

3.3.1. Unnamed Data Stream

A copy of at least the first four FILE records of the $MFT.

Table 3.5. Layout of $MFTMirr

Inode Filename Description

0 $MFT Master File Table - An index of every file

1 $MFTMirr A backup copy of the first 4 records of the MFT

2 $Logfile Transactional logging file

3 $Volume Serial number, creation time, dirty flag

4 ... If present, further FILE records from the MFT (see $MFT)

4. NTFS Files: $LogFile (2)
4.1. Overview

4.2. $LogFile Attributes

Table 3.6. $LogFile Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $LogFile

0x80 $DATA [Unnamed]

4.3. Layout of the File

4.3.1. Unnamed Data Stream

Little is known about the LogFile's structure.

4.4. Notes

4.4.1. Other Information

The logging area consists of a sequence of 4KB log records.

Each logrecord is structured as follows:

offset(length) contents
0(4) Magic number 'RCRD'
1E(12) Fixup

NTFS Files

38

The logrecord supposedly contains a sequence of variable sized records. The structuring of those is not
clear. File 2 is $LogFile, which contains transaction records to guarantee data integrity in case of a sys-
tem failure. As pp. 37 describe, it consists of 2 copies of the restart area, and the 'infinite' logging area.

When you want to write a file on a storage unit, you have to update the file itself plus some tables of the
filesystem (say as an example the date of the file). At this point, you need a transaction made of 2 opera-
tions (update the file itself, update the date of the file).

If the transaction is realized, you are sure that your file is written on the storage unit, and that the filesys-
tem has been left in a defined state.

If the transaction is not realized (in case of e.g. power failure, or system failure in general), the filesys-
tem is in an undefined state. The only way for you to put it back in a defined (and sane) state (this opera-
tion is called a roll-back) is to log in a special file, the log file, which operations of the transaction have
been successfully completed.

At the first access to the disk after a system failure, the system read the log file and rolls back all the op-
erations to the beginning of the last transaction.

• When the system writes to the log file, the operation must be atomic and immediate.

• You can put back your volume in sane state in a short time which is not related to the size of your
disk but only to the complexity of the transaction that failed. Note: This operation is not performed
by the Windows NT chkdsk utility, but by the system: this normal and reliable operation is a feature
of NTFS.

• If your hardware is reliable, you are sure that you always have access to all the files of your volume,
because it is consistent. But you can't restore eventual data losses.

Log file organization:

Two restart areas present in the first two pages (restart pages). When the volume is unmounted they
should be identical.

These are followed by log records organized in pages headed by a record header going up to log file
size.

Not all pages contain log records when a volume is first formatted, but as the volume ages, all records
will be used.

When the log file fills up, the records at the beginning are purged (by modifying the oldest_lsn to a high-
er value presumably) and writing begins at the beginning of the file. Effectively, the log file is viewed as
a circular entity.

Log file restart page header (begins the restart area):

struct {
NTFS_RECORD; The magic is "RSTR".
__u64 chkdsk_lsn; The check disk log file sequence

number for this restart page.
Only used when the magic is changed
to "CHKD". = 0

__u32 system_page_size; Byte size of system pages, has to be
>= 512 and a power of 2. Use this

to calculate the required size of the

NTFS Files

39

usa and add this to the
ntfs.usa_offset value. Then verify
that the result is less than the
value of the restart_offset. = 0x1000

__u32 log_page_size; Byte size of log file records,
has to be >= 512 and a power of 2.
= 0x1000

__u16 restart_offset; Byte offset from the start of the
record to the restart record.
Value has to be aligned to 8-byte
boundary. = 0x30

__s16 minor_ver; Log file minor version. Only check if
major version is 1. (=1 but >=1 is
treated the same and <=0 is also
ok)

__u16 major_ver; Log file major version (=1 but =0 is
ok)

} RESTART_PAGE_HEADER;

Log file restart area record:

The offset of this record is found by adding the offset of the RESTART_PAGE_HEADER to the re-
start_offset value found in it.

struct {
__u64 current_lsn; Log file record. = 0x700000, 0x700808
__u16 log_clients; Number of log client records

following the restart_area. = 1
__u16 client_free_list; How many clients are free(?). If !=

0xffff, check that log_clients >
client_free_list. = 0xffff

__u16 client_in_use_list; How many clients are in use(?).
If != 0xffff check that log_clients

> client_in_use_list. = 0
__u16 flags; ??? = 0
__u32 seq_number_bits; ??? = 0x2c or 0x2d
__u16 restart_area_length;Length of the restart area.

Following checks required if version
matches. Otherwise, skip them.
restart_offset + restart_area_length
has to be <lt;= system_page_size.
Also, restart_area_length has to be

>= client_array_offset +
(log_clients * 0xa0). = 0xd0

__u16 client_array_offset;Offset from the start of this record
to the first client record if versions
are matched. The offset is otherwise
assumed to be (sizeof(RESTART_AREA) +
7) & ~7, i.e. rounded up to first
8-byte boundary. Either way, the
offset to the client array has to be
aligned to an 8-byte boundary. Also,
restart_offset + offset to the client
array have to be <lt;= 510. Also,
the offset to the client array +
(log_clients * 0xa0) have to be

<lt;= SystemPageSize. = 0x30
__u64 file_size; Byte size of the log file. If the

restart_offset + the offset of the
file_size are > 510 then corruption
has occured. This is the very first
check when starting with the

NTFS Files

40

restart_area as if it fails it means
that some of the above values will be
corrupted by the multi sector transfer
protection! If the structure is
deprotected then these checks are
futile of course.
Calculate the file_size bits and check
that seq_number_bits == 0x43 -
file_size bits. = 0x400000

__u32 last_lsn_data_length;??? = 0, 0x40
__u16 record_length; Byte size of this record. If the

version matches then check that the
value of record_length is a multiple
of 8, i.e. (record_length + 7) &
~7 == record_length. = 0x30

__u16 log_page_data_offset;??? = 0x40
} RESTART_AREA;

Log file client record:

Starts at 0x58 even though AFAIU the above it should start at 0x60. Something fishy is going on. /-:

struct {
__u64 oldest_lsn; Oldest log file sequence number for

this client record. = 0xbd16951d
__u64 client_restart_lsn; ??? = 0x700000, 0x700827, 0x700d07
__u16 prev_client; ??? = 0x808, 0xd07, 0xd5d
__u16 next_client; ??? = 0x70
__u16 seq_number; ??? = 0, 4 size uncertain, Regis

calls this "volume clear flag" and
gives a size of one byte.

__u16 client_name; ??? = empty string??? size uncertain
} RESTART_CLIENT;

NOTE: Above client record is followed by 0xffffffff probably to indicate the end of the restart area.
Then there are 8 bytes = 0, then one __u32 = 8, followed by the Unicode string "NTFS" and then zeroes
till the end of the page. Is this important at all?

Log page record page header:

Each log page begins with this header and is followed by several LOG_RECORD structures.

struct {
NTFS_RECORD; The magic is "RCRD".
union {

__u64 last_lsn;
__u32 file_offset;

} copy;
__u32 flags;
__u16 page_count;
__u16 page_position;
union {

struct {
__u64 next_record_offset;
__u64 last_end_lsn;

} packed;
} header;

} RECORD_PAGE_HEADER;

NTFS Files

41

Possible flags for log records:

enum {
LOG_RECORD_MULTI_PAGE = 1, ???
LOG_RECORD_SIZE_PLACE_HOLDER = 0xffff,

This has nothing to do with the log record.
It is only so gcc knows to make the flags 16-bit.

} LOG_RECORD_FLAGS;

Log record header:

struct {
__u64 this_lsn;
__u64 client_previous_lsn;
__u64 client_undo_next_lsn;
__u32 client_data_length;
struct {

__u16 seq_number;
__u16 client_index;

} client_id;
__u32 record_type;
__u32 transaction_id;
LOG_RECORD_FLAGS flags;
__u16 reserved_or_alignment[3];

*** Now are at ofs 0x30 into struct. ***
__u16 redo_operation;
__u16 undo_operation;
__u16 redo_offset;
__u16 redo_length;
__u16 undo_offset;
__u16 undo_length;
__u16 target_attribute;
__u16 lcns_to_follow; Number of lcn_list entries

following this entry.
__u16 record_offset;
__u16 attribute_offset;
__u32 alignment_or_reserved;
__u32 target_vcn;
__u32 alignment_or_reserved1;
struct { Only present if lcns_to_follow is not 0.

__u32 lcn;
__u32 alignment_or_reserved;

} lcn_list[0];
} LOG_RECORD;

The restart area (supposedly) has a pointer into the log area, such as the first and last log records written
and the last checkpoint record written. If the restart area is screwed, recovery will be very hard - there-
fore you have two copies of the restart areas.

Individual log records are identified by logical sequence numbers (LSNs). The log area wraps around,
but the LSNs don't (at least not anytime soon), so they are used for identifying log records instead of the
offset in the log file.

Any modification of meta data (such as updating the time stamp that the file system was opened) will
result in log file actions, which in turn result in restart area changes. It might well be that the dirty bit is
implicit rather than explicit: The file system is clean if the last log record says that there are no pending
transactions.

NTFS Files

42

5. NTFS Files: $Volume (3)
5.1. Overview

This is a system file containing information about the volume.

5.2. $Volume Attributes

Table 3.7. $Volume Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $Volume

0x50 $SECURITY_DESCRIPTOR

0x60 $VOLUME_NAME

0x70 $VOLUME_INFORMATION

0x80 $DATA [Unnamed]

5.3. Layout of the File

5.3.1. Unnamed Data Stream

The $DATA attribute has zero length.

5.4. Notes

5.4.1. Other Information

The Serial Number of a volume is stored in $Boot.

This is the only Metadata File that uses the $VOLUME_NAME and $VOLUME_INFORMATION file
attributes.

6. NTFS Files: $AttrDef (4)
6.1. Overview

This is a system file containing information about all the file attributes usable in a volume.

Attribute end marker 0xFFFFFFFF

6.2. $AttrDef Attributes

Table 3.8. $AttrDef Attributes

NTFS Files

43

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $AttrDef

0x50 $SECURITY_DESCRIPTOR

0x80 $DATA [Unnamed]

6.3. Layout of the File

6.3.1. Unnamed Data Stream

Its layout is a sequence of records. Each record defines one file attribute, and its layout is:

Table 3.9. Layout of $AttrDef

Offset Size Description

0x00 128 Label in Unicode

0x80 4 Type

0x84 4 Display rule

0x88 4 Collation rule

0x8C 4 Flags

0x90 8 Minimum size

0x98 8 Maximum size

6.3.2. Display Rule

At the moment this is always zero

6.3.3. Collation Rule

At the moment this is always zero, but the possible values are:

Table 3.10. $AttrDef Collation Rules

Flag Description

0x00 Binary

0x01 Filename

0x02 Unicode String

0x10 Unsigned Long

0x11 SID

0x12 Security Hash

0x13 Multiple Unsigned Longs

6.3.4. Flags

NTFS Files

44

We've only witnessed three flags: 0x02, 0x40 and 0x80. It seems that 0x40 and 0x80 are never seen to-
gether. Therefore, the guess is that:

Table 3.11. $AttrDef Flags

Flag Description

0x02 Indexed

0x40 Resident (always)

0x80 Non-Resident (allowed to be)

6.4. Notes

• $PROPERTY_SET existed, briefly, in NTFS v3.0. It was intended to support Native Structure Stor-
age (NSS).

• obsolete: $VOLUME_VERSION and $SYMBOLIC_LINK appeared in WinNT but weren't used.
They don't appear in either Win2K or WinXP.

6.4.1. Other Information

It should be possible to add user-defined attributes to this file.

$AttrDef has big WAS it? 36K?

yep in nt4 = 36K mostly blank

now 2560 = 15attrs + 1 blank (2.5K)

6.5. Examples

6.5.1. Windows NT Example

Table 3.12. $AttrDef example from Windows NT

Type Name Flags IRN Min Size Max Size

0x10 $STANDARD_INFORMATION 0x40 R 0x30 0x30

0x20 $ATTRIBUTE_LIST 0x80 N - -

0x30 $FILE_NAME 0x42 IR 0x44 0x242

0x40 $VOLUME_VERSION 0x40 R 0x8 0x8

0x50 $SECURITY_DESCRIPTOR 0x80 N - -

0x60 $VOLUME_NAME 0x40 R 0x2 0x100

0x70 $VOLUME_INFORMATION 0x40 R 0xC 0xC

0x80 $DATA 0x00 - -

0x90 $INDEX_ROOT 0x40 R - -

0xA0 $INDEX_ALLOCATION 0x80 N - -

0xB0 $BITMAP 0x80 N - -

NTFS Files

45

Type Name Flags IRN Min Size Max Size

0xC0 $SYMBOLIC_LINK 0x80 N - -

0xD0 $EA_INFORMATION 0x40 R 0x8 0x8

0xE0 $EA 0x00 - 0x10000

6.5.2. Windows 2000 and Windows XP Example

Table 3.13. $AttrDef example from Windows 2000/XP

Type Name Flags IRN Min Size Max Size

0x10 $STANDARD_INFORMATION 0x40 R 0x30 0x48

0x20 $ATTRIBUTE_LIST 0x80 N - -

0x30 $FILE_NAME 0x42 IR 0x44 0x242

0x40 $OBJECT_ID 0x40 R - 0x100

0x50 $SECURITY_DESCRIPTOR 0x80 N - -

0x60 $VOLUME_NAME 0x40 R 0x2 0x100

0x70 $VOLUME_INFORMATION 0x40 R 0xC 0xC

0x80 $DATA 0x00 - -

0x90 $INDEX_ROOT 0x40 R - -

0xA0 $INDEX_ALLOCATION 0x80 N - -

0xB0 $BITMAP 0x80 N - -

0xC0 $REPARSE_POINT 0x80 N - 0x4000

0xD0 $EA_INFORMATION 0x40 R 0x8 0x8

0xE0 $EA 0x00 - 0x10000

0xF0 $PROPERTY_SET ? ? ? ?

0x100 $LOGGED_UTILITY_STREAM 0x80 N - 0x10000

7. NTFS Files: . (Root Directory) (5)
7.1. Overview

The Root Directory of an NTFS, called . (dot) is an ordinary directory. If the volume has Reparse Points
then the directory will have a Named Data Stream called $MountMgrDatabase. See the Directory Page
for more information.

7.2. Dot (.) Attributes

Table 3.14. Dot (.) Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME .

0x50 $SECURITY_DESCRIPTOR

NTFS Files

46

Type Description Name

0x80 $DATA $MountMgrDatabase

0x90 $INDEX_ROOT $I30

0xA0 $INDEX_ALLOCATION $I30

0xB0 $BITMAP $I30

7.3. Layout of the File

7.3.1. $MountMgrDatabase Data Stream

This Data Stream only exists when there are Reparse Points on the Volume. It consists of repeating
groups of:

Table 3.15. Layout of Dot (.)

Offset Size Description

0x00 4 Size of entry

0x04 4 Flags? (bitfield?)

0x08 2 Offset to UNC Path

0x0A 2 Size of UNC Path

0x0C 2 Offset to data

0x0E 2 Size of data

7.4. Notes

7.4.1. Other Information

See the Directory Page for more information.

8. NTFS Files: $Bitmap (6)
8.1. Overview

This file lists which clusters are in use. Each bit in this file represents one LCN.

8.2. $Bitmap Attributes

Table 3.16. $Bitmap Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $Bitmap

0x80 $DATA [Unnamed]

NTFS Files

47

8.3. Layout of the File

8.3.1. Unnamed Data Stream

The lowest bit represents the lowest numbered LCN. Thus:

Table 3.17. Layout of $Bitmap

Bit LCN

00000001
2

0

00000010
2

1

00000100
2

2

... etc

8.4. Notes

8.4.1. MFT Zone

To prevent the MFT becoming fragmented, Windows maintains a buffer around it. No new files will be
created in this buffer region until the other disk space is used up.

The buffer size is configurable and can be 12.5%, 25%, 37.5% or 50% of the disk. Each time the rest of
the disk becomes full, the buffer size is halved.

8.4.2. Other Information

The size of this file is always a multiple of 8 bytes (64 clusters). Because of this rounding-up, the
$Bitmap will represent slightly more clusters than the disk has. These bit are always set to 1.

The backup copy of the boot sector lies in this no-mans-land the cluster is hence marked as in use.

In theory, on very small volume, this attribute could be resident. In practice, Windows crashes.

9. NTFS Files: $Boot (7)
9.1. Overview

This is the system file that allows the system to boot.

This metadata file points at the boot sector of the volume.

It contains information about the size of the volume, clusters and the MFT.

It is the only file that cannot be relocated.

9.2. $Boot Attributes

Table 3.18. $Boot Attributes

NTFS Files

48

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $Boot

0x50 $SECURITY_DESCRIPTOR

0x80 $DATA [Unnamed]

9.3. Layout of the File

9.3.1. Unnamed Data Stream

Table 3.19. Layout of $Boot

Offset Size Description

0x0000 3 Jump to the boot loader routine

0x0003 8 System Id: "NTFS "

0x000B 2 Bytes per sector

0x000D 1 Sectors per cluster

0x000E 7 Unused

0x0015 1 Media descriptor (a)

0x0016 2 Unused

0x0018 2 Sectors per track

0x001A 2 Number of heads

0x001C 8 Unused

0x0024 4 Usually 80 00 80 00 (b)

0x0028 8 Number of sectors in the volume

0x0030 8 LCN of VCN 0 of the $MFT

0x0038 8 LCN of VCN 0 of the $MFTMirr

0x0040 4 Clusters per MFT Record (c)

0x0044 4 Clusters per Index Record (c)

0x0048 8 Volume serial number

~ ~ ~

0x0200 Windows NT Loader

9.4.
(a) A media descriptor of 0xF8 means a hard disk.

(b) A value of 80 00 00 00 has been seen on a USB thumb drive which is formatted with NTFS under
Windows XP. Note this is removable media and is not partitioned, the drive as a whole is NTFS format-
ted.

(c) This can be negative, which means that the size of the MFT/Index record is smaller than a cluster. In
this case the size of the MFT/Index record in bytes is equal to 2^(-1 * Clusters per MFT/Index record).
So for example if Clusters per MFT Record is 0xF6 (-10 in decimal), the MFT record size is 2^(-1 * -10)

NTFS Files

49

= 2^10 = 1024 bytes.

9.5. Notes

9.5.1. Other Information

The first 40 bytes are the same as for FAT boot sectors, except that unused fields are zeroed.

Because this file begins with a boot sector, it must start at physical cluster 0 (this is the only cluster that
NTFS can not move). This forces the data attribute of this file to be non-resident. Consequently, the
copy of the boot sector (critical data) can be located anywhere on the volume.

For crash recovery purposes Windows NT 3.51 saves a copy of the boot sector and puts it in the logical
middle of the volume. Windows NT and later put it at the end of the volume.

10. NTFS Files: $BadClus (8)
10.1. Overview

This Metadata file contains a list of all the bad clusters on the volume.

The file is sparse, with the only data runs pointing at bad clusters.

Naturally the file cannot be read.

10.2. $BadClus Attributes

Table 3.20. $BadClus Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $BadClus

0x80 $DATA [Unnamed]

0x80 $DATA $Bad

10.3. Layout

10.3.1. Unnamed Data Stream

This is always zero length.

10.3.2. $Bad Data Stream

It is a file the size of the volume. Any cluster that is OK, is represented by a sparse (zero) cluster. Any
bad cluster points to that cluster on disk.

10.4. Notes

NTFS Files

50

10.4.1. Other Information

A cluster is bad if it contains at least one bad sector.

Because this system file works as any other file, all the bad clusters are marked as used in the $Bitmap
system file, so they can never ever be used by any other file.

NTFS support hot-fixing: no more FAT's "Abort, Retry, Fail?". If a new bad cluster is found while the
system is running, it is silently added to this file. If the cluster was on a fault tolerant volume, ftdisk (the
fault tolerant volume driver) reconstitutes the data and NTFS stores them in another free cluster.

• Has an empty unnamed data stream.

• Has a named ($Bad) data stream, the size of the volume (sparse)

• entire volume of clusters (VCN)

• allocated size = volume size (bytes)

• attribute size = volume size (bytes)

• initialised size = 0 (or is one of above, redundant)

• runs imply sparse file size of volume

• initialised = 0 implies completely sparse

This file deals with Clusters not sectors. The Cluster is the smallest unit of disk space that NTFS will
use.

11. NTFS Files: $Secure (9)
11.1. Overview

In NTFS v1.2, every file had a $SECURITY_DESCRIPTOR Attribute. It was inefficient to read and
check these for every file access and most of them were the same.

NTFS v3.0 introduced a new Metadata File $Secure.

A new field in $STANDARD_INFORMATION, the Security Id, is a index into $Secure.

There is a Data Stream, $SDS, and two indexes $SII and $SDH.

The Data Stream has a copy of every $SECURITY_DESCRIPTOR Attribute on the volume, and the in-
dexes cross-reference everything.

11.2. $Secure Attributes

Table 3.21. $Secure Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $Secure

NTFS Files

51

Type Description Name

0x80 $DATA $SDS

0x90 $INDEX_ROOT $SDH

0x90 $INDEX_ROOT $SII

0xA0 $INDEX_ALLOCATION $SDH

0xA0 $INDEX_ALLOCATION $SII

0xB0 $BITMAP $SDH

0xB0 $BITMAP $SII

11.3. Layout of the File

11.3.1. $SDS Data Stream

The Security Descriptor Stream ($SDS) contains a list of all the Security Descriptors on the volume.

Each entry is padded to a 16 byte boundary and has a hash for indexing purposes.

Table 3.22. Layout of $Secure:$SDS

Offset Size Description

0x00 4 Hash of Security Descriptor

0x04 4 Security Id

0x08 8 Offset of this entry in this file

0x10 4 Size of this entry

0x04 V Self-relative Security Descriptor

V+0x04 P16 Padding

sorted by security id
Self-relative? == has 2 * SID
generally a large file, not all used
there may be missing entries - test
large block of ids at start, then junk, then another block at 256KB

11.3.2. $SDH Index

The Security Descriptor Hash ($SDH) Index

Table 3.23. Layout of $Secure:$SDH

Offset Size Value Description

~ ~ ~ Standard Index Header

0x00 2 0x18 Offset to data

0x02 2 0x14 Size of data

0x04 4 0x00 Padding

0x08 2 0x30 Size of Index Entry

NTFS Files

52

Offset Size Value Description

0x0A 2 0x08 Size of Index Key

0x0C 2 Flags

0x0E 2 0x00 Padding

0x10 4 Key Hash of Security Descriptor

0x14 4 Key Security Id

0x18 4 Data Hash of Security Descriptor

0x1C 4 Data Security Id

0x20 8 Data Offset to Security Descriptor (in $SDS)

0x28 4 Data Size of Security Descriptor (in $SDS)

0x2C P8 Data Padding

Last padding is always 4 bytes and always appears to be the Unicode string "II".

11.3.3. $SII Index

The Security Id Index ($SII)

Table 3.24. Layout of $Secure:$SII

Offset Size Value Description

~ ~ ~ Standard Index Header

0x00 2 0x14 Offset to data

0x02 2 0x14 Size of data

0x04 4 0x00 Padding

0x08 2 0x28 Size of Index Entry

0x0A 2 0x04 Size of Index Key

0x0C 2 Flags

0x0E 2 0x00 Padding

0x10 4 Key Security Id

0x14 4 Data Hash of Security Descriptor

0x18 4 Data Security Id

0x1C 8 Data Offset to Security Descriptor (in $SDS)

0x24 4 Data Size of Security Descriptor (in $SDS)

This file is sorted by the hash.
The security descriptors are stored in the $SDS data stream.
surprisingly the offset (64 bit isn't 8 byte aligned)

11.4. Notes

NTFS Files

53

11.4.1. Questions

• Why do some files still have a $SECURITY_DESCRIPTOR Attribute?

• How is the Security Hash generated?

12. NTFS Files: $UpCase (10)
12.1. Overview

This is a 128KB file full of capital letters.

For each character in the Unicode alphabet, there is an entry in this file.

It is used to compare and sort filenames.

12.2. $UpCase Attributes

Table 3.25. $UpCase Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $UpCase

0x80 $DATA [Unnamed]

12.3. Layout of the File

12.3.1. Unnamed Data Stream

Table 3.26. Layout of $UpCase

Offset Character

~ ~

0x82 A

0x84 B

0x86 C

~ ~

12.4. Notes

12.4.1. Other Information

This file allows the system to compare filenames independently of their code page.

NTFS Files

54

13. NTFS Files: $Extend (11)
13.1. Overview

Windows 2K has introduced a new directory for metadata files.

This is a directory containing the Metadata files: $ObjId, $Quota, $Reparse and $UsnJrnl.

13.2. $Extend Attributes

Table 3.27. $Extend Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $Extend

0x90 $INDEX_ROOT $I30

13.3. Layout of the File

13.3.1. $I30 Index

This is an ordinary directory. There is no data stream for this file.

13.4. Notes

13.4.1. Other Information

Because there are only up to four files in this directory, there's never any need for an
$INDEX_ALLOCATION and a $BITMAP.

14. NTFS Files: $ObjId (Any)
14.1. Overview

This system file is an index of all the $OBJECT_ID Attributes in use on the volume. See the
$OBJECT_ID page for more details.

14.2. $ObjId Attributes

Table 3.28. $ObjId Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $ObjId

0x90 $INDEX_ROOT $O

0xA0 $INDEX_ALLOCATION $O

NTFS Files

55

Type Description Name

0xB0 $BITMAP $O

14.3. Layout of the File

14.3.1. $O Index

Table 3.29. Layout of $ObjId:$O

Offset Size Value Description

~ ~ ~ Standard Index Header

0x00 2 0x20 Offset to data

0x02 2 0x38 Size of data

0x04 4 0x00 Padding

0x08 2 0x58 Size of Index Entry

0x0A 2 0x10 Size of Index Key

0x0C 2 Flags

0x0E 2 0x00 Padding

0x10 16 Key GUID Object Id

0x20 8 Data MFT Reference

0x28 16 Data GUID Birth Volume Id

0x38 16 Data GUID Birth Object Id

0x48 16 Data GUID Domain Id

14.3.2. Flags

Table 3.30. $ObjId flags

Flag Description

0x01 Entry has subnodes

0x02 Last Entry

14.4. Notes

14.4.1. Other Information

The index is called $O. This is an index of Object Ids. It should not be confused with the index of the
same name, used by the Metadata File $Quota.

The index, $O, is sorted by GUID (0x13). This Collation Rule is specified in the Index Root.

A file's $OBJECT_ID Attribute has a GUID that can be found in this Index. The Index's data provides
an MFT reference back to the file.

NTFS Files

56

15. NTFS Files: $Quota (NT:9, 2K:Any)
15.1. Overview

This file first appeared in Window NT, but wan't used. In Windows 2000, and later, it keeps track of file
quotas.

Quotas are kept per person and per volume.

15.2. $Quota Attributes

Table 3.31. $Quota Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $Quota

0x90 $INDEX_ROOT $O

0x90 $INDEX_ROOT $Q

0xA0 $INDEX_ALLOCATION $O

0xA0 $INDEX_ALLOCATION $Q

0xB0 $BITMAP $O

0xB0 $BITMAP $Q

15.3. Layout of the File

15.3.1. $O Index

Table 3.32. Layout of $Quota:$O

Offset Size Value Description

~ ~ ~ Standard Index Header

0x00 2 0x1C Offset to data

0x02 2 0x04 Size of data

0x04 4 0x00 Padding

0x08 2 0x20 Size of Index Entry

0x0A 2 0x0C Size of Index Key (K)

0x0C 2 Flags

0x0E 2 0x00 Padding

0x10 K Key SID

K+0x10 4 Data Owner Id

K+0x14 P Data Padding8

Flags?

NTFS Files

57

15.3.2. $Q Index

header & repeating group

Table 3.33. Layout of $Quota:$Q

Offset Size Value Description

~ ~ ~ Standard Index Header

0x00 2 0x14 Offset to data

0x02 2 Size of data

0x04 4 0x00 Padding

0x08 2 Size of Index Entry

0x0A 2 0x04 Size of Index Key

0x0C 4 0x00 Padding

0x10 4 Key Owner Id

0x14 4 0x02 Data Version

0x18 4 Data Flags

0x1C 8 Data Bytes Used

0x24 8 Data Change Time

0x2C 8 Data Warning Limit

0x34 8 Data Hard Limit

0x3C 8 Data Exceeded Time

0x44 V Data SID

V+0x44 P 0x00 Data Padding8

sid may be missing (quota flags = default limit => no SID, just padding)
padding may not be necessary
index key - xref to which index?
change time - date/time
exceeded time - 10/4/01 (not +5 days)
in the last (null) entry, the padding at 0x0C = 0x02

15.3.3. Flags

Table 3.34. $Quota flags

Flag Description

0x0001 Default Limits

0x0002 Limit Reached

0x0004 Id Deleted

0x0010 Tracking Enabled

0x0020 Enforcement Enabled

0x0040 Tracking Requested

NTFS Files

58

Flag Description

0x0080 Log Threshold

0x0100 Log Limit

0x0200 Out Of Date

0x0400 Corrupt

0x0800 Pending Deletes

15.4. Notes

15.4.1. Other Information

The index is called $O. This is an index of Owner Ids. It should not be confused with the index of the
same name, used by the Metadata File $ObjId.

A file's Owner Id is stored in the $STANDARD_INFORMATION Attribute. The Owner Id can be
looked up in $O, to give a Security Id (SID) or looked up in $Q to provide quota information.

The $Q index contains one entry for each existing user_id on the
volume. The index key is the user_id of the user/group owning this
quota control entry, i.e. the key is the owner_id. The user_id of
the owner of a file, i.e. the owner_id, is found in the standard
information attribute. The collation rule for $Q is
COLLATION_NTOFS_ULONG.

The $O index contains one entry for each user/group who has been
assigned a quota on that volume. The index key holds the SID of
the user_id the entry belongs to, i.e. the owner_id. The collation
rule for $O is COLLATION_NTOFS_SID.

The $O index entry data is the user_id of the user corresponding
to the SID.
This user_id is used as an index into $Q to find the quota control
entry associated with the SID.

16. NTFS Files: $Reparse (Any)
16.1. Overview

Win2K can mount volumes and shares on top of existing directories. This is managed part in software
and part by the volume itself.

16.2. $Reparse Attributes

Table 3.35. $Reparse Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME $Reparse

0x90 $INDEX_ROOT $R

NTFS Files

59

Type Description Name

0xA0 $INDEX_ALLOCATION $R

0xB0 $BITMAP $R

16.3. Layout of the File

16.3.1. $R Index

Table 3.36. Layout of $Reparse:$R

Offset Size Value Description

~ ~ ~ Standard Index Header

0x00 2 0x1C Offset to data

0x02 2 0x00 Size of data

0x04 4 0x00 Padding

0x08 2 0x20 Size of Index Entry

0x0A 2 0x0C Size of Index Key

0x0C 2 Flags

0x0E 2 0x00 Padding

0x10 4 Key Reparse Tag (and Flags)

0x14 8 Key MFT Reference of Reparse Point

0x1C 4 0x00 Key Padding (align to 8 bytes)

0xA000003 flags - see $REPARSE_POINT
No data!

16.4. Notes

16.4.1. Other Information

More information needed.

17. NTFS Files: $UsnJrnl (Any)
17.1. Overview

A user-readable equivalent of the LogFile.

17.2. $UsnJrnl Attributes

Table 3.37. $UsnJrnl Attributes

Type Description Name

0x10 $STANDARD_INFORMATION

NTFS Files

60

Type Description Name

0x30 $FILE_NAME $UsnJrnl

0x80 $DATA $J

0x80 $DATA $Max

17.3. Layout of the File

17.3.1. $J Data Stream

repeating group

Table 3.38. Layout of $UsnJrnl:$J

Offset Size Description

0x00 4 Size of entry

0x04 2 Major Version

0x06 2 Minor Version

0x08 8 MFT Reference

0x10 8 Parent MFT Reference

0x18 8 Offset of this entry in $J

0x20 8 Timestamp

0x28 4 Reason

0x2B 4 SourceInfo

0x30 4 SecurityID

0x34 4 FileAttributes

0x38 2 Size of filename (in bytes)

0x3A 2 Offset to filename

0x3C V Filename

V+0x3C P Padding (align to 8 bytes)

17.4.

17.4.1. $Max Data Stream

Table 3.39. Layout of $UsnJrnl:$Max

Offset Size Description

0x00 8 Maximum Size

0x08 8 Allocation Delta

0x10 8 USN ID (a)

0x18 8 Lowest Valid USN

NTFS Files

61

(a) In version 2.0 of the USN Journal, Microsoft uses a FILETIME 64-bit value to randomize the USN
ID. However, future versions might use another way to generate the ID, so it is not safe to assume this to
be the time of the journals creation.

17.5. Notes
Version Number

The current version number is 2.0 (Major = 2, Minor = 0).

Reason Flags

Table 3.40. $UsnJrnl reason flags

Flag Description

0x01 Data in one or more named data streams for the file was overwritten.

0x02 The file or directory was added to. 0x04 The file or directory was truncated.

0x10 Data in one or more named data streams for the file was overwritten.

0x20 One or more named data streams for the file were added to.

0x40 One or more named data streams for the file was truncated.

0x100 The file or directory was created for the first time.

0x200 The file or directory was deleted.

0x400 The user made a change to the file's or directory's extended attributes. These NTFS at-
tributes are not accessible to Windows-based applications.

0x800 A change was made in the access rights to the file or directory.

0x1000 The file or directory was renamed, and the file name in this structure is the previous
name.

0x2000 The file or directory was renamed, and the file name in this structure is the new name.

0x4000 A user changed the FILE_ATTRIBUTE_NOT_CONTENT_INDEXED attribute.
That is, the user changed the file or directory from one that can be content indexed to
one that cannot, or vice versa.

0x8000 A user has either changed one or more file or directory attributes or one or more time
stamps.

0x10000 An NTFS hard link was added to or removed from the file or directory.

0x20000 The compression state of the file or directory was changed from or to compressed.

0x40000 The file or directory was encrypted or decrypted.

0x80000 The object identifier of the file or directory was changed.

0x100000 The reparse point contained in the file or directory was changed, or a reparse point
was added to or deleted from the file or directory.

0x200000 A named stream has been added to or removed from the file, or a named stream has
been renamed.

0x80000000 The file or directory was closed.

Source Info Flags

Table 3.41. $UsnJrnl source info flags

NTFS Files

62

Flag Description

0x01 The operation provides information about a change to the file or directory made by
the operating system. A typical use is when the Remote Storage system moves data
from external to local storage. Remote Storage is the hierarchical storage management
software. Such a move usually at a minimum adds the
USN_REASON_DATA_OVERWRITE (0x01) flag to a USN record.

0x02 The operation adds a private data stream to a file or directory. An example might be a
virus detector adding checksum information. As the virus detector modifies the item,
the system generates USN records. USN_SOURCE_AUXILIARY_DATA (0x02) in-
dicates that the modifications did not change the application data.

0x04 The operation creates or updates the contents of a replicated file. For example, the file
replication service sets this flag when it creates or updates a file in a replicated direct-
ory.

NTFS Files

63

Chapter 4. NTFS Concepts
1. Overview

When a few lines in the glossary aren't enough.

1.1. Index

Table 4.1. NTFS Concepts

Concept Description

Attribute Header Standard Attribute Header

Attribute Id Attribute Ids used in the MFT FILE Record

B*Tree Balanced tree data structure, holds the NTFS directory tree

Clusters LCNs, VCNs, sizes

Collation Sorting and searching

Compression File and directory level compression

Data Runs Data runs

Directory A typical directory on NTFS

File A typical file on NTFS

FILE Record An MFT File Record

Filename Namespace Allowable filenames

FileRef File References

Fixup Sector fixups

Index Header Standard Index Header

INDX Record A directory index

Links Hard and Symbolic links

Restart LogFile Restart Area

SID Built-in Security Identifiers

Sparse Sparse files

2. Concept - Attribute Header
2.1. Overview

Every attribute in every MFT record has a standard header. The header stores information about the at-
tribute's type, size, name (optional) and whether it is resident, or not.

The size of the attribute depends on two things. Does it have a name? Is it resident? To simplify the
tables, all four possibilities will be shown in full (with some values already filled in).

2.2. Standard Attribute Header

64

2.2.1. Resident, No Name

Table 4.2. Layout of a resident unnamed attribute header

Offset Size Value Description

0x00 4 Attribute Type (e.g. 0x10, 0x60)

0x04 4 Length (including this header)

0x08 1 0x00 Non-resident flag

0x09 1 0x00 Name length

0x0A 2 0x00 Offset to the Name

0x0C 2 0x00 Flags

0x0E 2 Attribute Id (a)

0x10 4 L Length of the Attribute

0x14 2 0x18 Offset to the Attribute

0x16 1 Indexed flag

0x17 1 0x00 Padding

0x18 L The Attribute

(a) Each attribute has a unique identifier

2.2.2. Resident, Named

Table 4.3. Layout of a resident named attribute header

Offset Size Value Description

0x00 4 Attribute Type (e.g. 0x90, 0xB0)

0x04 4 Length (including this header)

0x08 1 0x00 Non-resident flag

0x09 1 N Name length

0x0A 2 0x18 Offset to the Name

0x0C 2 0x00 Flags

0x0E 2 Attribute Id (a)

0x10 4 L Length of the Attribute

0x14 2 2N+0x18 Offset to the Attribute (b)

0x16 1 Indexed flag

0x17 1 0x00 Padding

0x18 2N Unicode The Attribute's Name

2N+0x18 L The Attribute (c)

(a) Resident attributes cannot be compressed.

(b) Each attribute has a unique identifier.

NTFS Concepts

65

(c) Rounded up to a multiple of 4 bytes.

2.2.3. Non-Resident, No Name

Table 4.4. Layout of a non-resident unnamed attribute header

Offset Size Value Description

0x00 4 Attribute Type (e.g. 0x20, 0x80)

0x04 4 Length (including this header)

0x08 1 0x01 Non-resident flag

0x09 1 0x00 Name length

0x0A 2 0x00 Offset to the Name

0x0C 2 Flags

0x0E 2 Attribute Id (a)

0x10 8 Starting VCN

0x18 8 Last VCN

0x20 2 0x40 Offset to the Data Runs

0x22 2 Compression Unit Size (b)

0x24 4 0x00 Padding

0x28 8 Allocated size of the attribute (c)

0x30 8 Real size of the attribute

0x38 8 Initialized data size of the stream (d)

0x40 ... Data Runs

(a) Each attribute has a unique identifier

(b) Compression unit size = 2 x clusters. 0 implies uncompressed

(c) This is the attribute size rounded up to the cluster size

(d) When is this not equal to the allocated size?

2.2.4. Non-Resident, Named

Table 4.5. Layout of a non-resident named attribute header

Offset Size Value Description

0x00 4 Attribute Type (e.g. 0x80, 0xA0)

0x04 4 Length (including this header)

0x08 1 0x01 Non-resident flag

0x09 1 N Name length

0x0A 2 0x40 Offset to the Name

0x0C 2 Flags

0x0E 2 Attribute Id (a)

0x10 8 Starting VCN

NTFS Concepts

66

Offset Size Value Description

0x18 8 Last VCN

0x20 2 2N+0x40 Offset to the Data Runs (b)

0x22 2 Compression Unit Size (c)

0x24 4 0x00 Padding

0x28 8 Allocated size of the attribute (d)

0x30 8 Real size of the attribute

0x38 8 Initialized data size of the stream (e)

0x40 2N Unicode The Attribute's Name

2N+0x40 ... Data Runs (b)

(a) Each attribute has a unique identifier

(b) Rounded up to a multiple of 4 bytes

(c) Compression unit size = 2 x clusters. 0 implies uncompressed

(d) This is the attribute size rounded up to the cluster size

(e) When is this not equal to the allocated size?

2.2.5. Flags

Table 4.6. Attribute flags

Flag Description

0x0001 Compressed

0x4000 Encrypted

0x8000 Sparse

2.3. Notes

2.3.1. Other Information

Only the data attribute can be compressed, or sparse, and only when it is non-resident.

Although the compression flag is stored in the header, it does not affect the size of the header.

name isn't null terminated

FIXME
0x40 __s64 compressed_size;
Byte size of the attribute value after compression.
Only present when compressed. Always is a multiple of the cluster
size. Represents the actual amount of disk space being used on the disk.

FIXME: The indexed flag only appears in the resident attributes. Does this mean you can only index res-

NTFS Concepts

67

ident attributes?

3. Concept - Attribute Id
3.1. Overview

Every Attribute in every FILE Record has an Attribute Id. This Id is unique within the FILE Record and
is used to maintain data integrity.

link to file record a field of the FILE Record each attribute has an id reused when zero skipped

Next Attribute Id

The Attribute Id that will be assigned to the next Attribute added to this MFT Record.

N.B. Incremented each time it is used.

N.B. Every time the MFT Record is reused this Id is set to zero.

N.B. The first instance number is always 0.

4. Concept - B*Trees
4.1. Overview

B+Trees

fixed order
height balanced
during add/remove of keys
minimal disturbance
pointers downwards only

4.2. Basic Terminology

• Key

An object bearing data

• Leaf

A key with no children

• Node

A collection of keys

• Order

A node of order n, has a maximum of n-1 keys

• Tree

NTFS Concepts

68

An ordered data structure

• Root Node

A node with no parent

• Median

The ceil((n-1)/2)th key in a node

• Siblings

Two keys in the same node, or two nodes with the same parent

• Depth

The number of layers in the tree. Grandparent, parents, children = 3

• b-tree

A balanced tree

• b+tree

A balanced tree whose nodes are at least 1/2 full

• b*tree

A balanced tree whose nodes are at least 2/3 full

4.3. NTFS Trees

index root
index allocation
dummy keys
data in non-leaf keys
on-disk pointer only point down

What we have so far

...

Overview

...

Add Rules

Find the first key that is larger than the new key
(this will be a necessarily be a leaf)
Insert the new key before this key (in the same node)
While the node is full

Split the current node in two
Promote the median key to the parent
Now consider the parent

End

Delete Rules

NTFS Concepts

69

Delete the key
If the key had children

Find the successor and move it to this node
Now consider the successor's old node

End
While the node isn't full enough

If a sibling has enough keys
steal one

Else
Combine with one of the sibling

End
End

4.4. Discussion
A discussion log from #ntfs on IRC.

flatcap : hi _Oracle_
Oracle: hi there
flatcap : anything I can do for you?
Oracle: I was wondering about the B+ trees of ntfs
Oracle: they seem to be a bit awkward, or at least - not what I expected :)
flatcap : they _do_ seem strange, but they are perfect for filesystems
Oracle: no, i meant their on-disk representation
Oracle: they have a dummy node of sorts?
flatcap : the trees in ntfs aren't proper b+trees
flatcap : a dummy key
Oracle: that's exactly what I was hoping to hear!
flatcap : (thinking is still a bit hard this morning, bear with me :-)
Oracle: no problem ;-)
flatcap : the trees consist of a node, which contains keys
flatcap : the keys in a real (ideal world) b+tree are just separators, and the data is only stored in the leaves
Oracle: right
Oracle: btw - how big is a node under ntfs? i mean, how many keys fit in there?
flatcap : the INDX record is 4k, an you can get 10's of filenames in it
flatcap : but..., that depends on the lengths of the filenames
Oracle: i thought the number of keys in a node was a fixed property of a b+ tree?
flatcap : hehe, usually, yes
flatcap : the keys of ntfs actually contain data and also a pointer to their children
Oracle: so i noticed
AntonA : one should add that INDX records of 2k size have also been seen in the wild - by me (-:
Oracle: really?
Oracle: what OS?
AntonA : NT4
flatcap : because there's one more child than key, there has to be a dummy key (no data, but has children)
Oracle: interesting...
AntonA : some of my directories (e.g. c:\winnt and c:\program files) have 2k INDX size while other dirs have 4k.
Oracle: so the dummy key is always the "largest"?
flatcap : yes
Oracle: i see...
Oracle: so if the non-leaf nodes have data of themselves, wouldn't that make the tree a b-tree?
flatcap : I've just written a test program to help me understand the trees, which is on bitkeeper
Oracle: I'd love to see that
flatcap : I read a lots of webpages and I think that the nearest term is a b*tree
Oracle: and how is it different from a b-tree?
flatcap : a b-tree maintains a minimum of 1/2 full nodes (except for the root node)
flatcap : a b*tree changes the rules slightly and maintains 2/3 full
Oracle: so it just changes the rules of combining two nodes to one and such?
flatcap : exactly

NTFS Concepts

70

Oracle: hmmm...
Oracle: let me think about that for a moment :)
flatcap : in a true b+tree, the data keys (leaves) should also have pointers to the next (for quick sequential accesses), but that's probably just maintained in memory
flatcap : I'm going to write up everything I know about ntfs trees soon
Oracle: let me see if i got that...
Oracle: the index root points to the root INDX record
flatcap : you can see my test prog at: http://linux-ntfs.bkbits.net:8080/tng-support/src/tree
Oracle: each INDX record contains keys that have pointers to the files themselves and to the keys with lower values
flatcap : yes
Oracle: I see
flatcap : the index root lives in the MFT record
Oracle: Yeah, this I managed to discover :)
flatcap : all the rest (index allocations) are non-res
Oracle: and the number of keys in a single INDX record is completely flexible?
AntonA : yes
flatcap : yes, but there's a minimum
AntonA : a minimum?
flatcap : yes, that's part of the tree algorithm
AntonA : surely the minimum is a non-data containing terminator entry?
Oracle: what's the minimum?
flatcap : the minimum for a b+tree is 1/2 full, b* 2/3 full
flatcap : only the root node may contain fewer
Oracle: oh.
Oracle: yeah
AntonA : and the last node...
flatcap : the keys are moved about to keep this true
flatcap : even the last node will have the "right number" in it
AntonA : that would mean that in a really large directory deleting one file could take hours?
flatcap : no, you might think that, but the balancing doesn't affect many other nodes
flatcap : if the tree is 4 deep (NTFS equiv say 10^5 files), you'd only be altering 4 index records
flatcap : I'll draw lots of pictures when I have a moment (probably tomorrow)
Oracle: that should be interesting to read!
flatcap : are you on our dev mailing list, _Oracle_
Oracle: What mailing list? (er... no.)
AntonA : the major question that springs to my mind is what would windows ntfs do if it saw an imbalanced tree (because we messed up or because we simply chose to ignore balancing)
flatcap : hehe, I hate to think :-)
Oracle: I wouldn't want to be there, that's for sure
flatcap : chkdsk would probably try and rebalance it and you might find that ntfs.sys would just balance it out as files were created/deleted
Oracle: how do i join the list?
flatcap : http://lists.sourceforge.net/lists/listinfo/linux-ntfs-dev
AntonA : um, it would be a lot easier to get directory operations working while ignoring the existence of the tree (obviously operating on them correctly so we don't kill the fs)
flatcap : I'll mail the list and answer questions there
AntonA : if windows is able to pickup the pieces without complaint / failure, it would be worth considering as a first pass of implementation at least.
flatcap : yes possibly, but I think I know enough now to build something close enough
flatcap : (I just wanted a big project where I could start without tripping over you :-)
AntonA : cool
Oracle: I've got a few more questions if you have the time
AntonA : As I said before. I am not going anywhere near directories. (-:
flatcap : sure
Oracle: Smaller ones, though

4.5. References
Here are some sites that I found helpful whilst writing the B-Tree code.

http://tide.it.bond.edu.au/inft320/003/lectures/physical.htm
http://cis.stvincent.edu/carlsond/swdesign/btree/btree.html
http://www.fit.qut.edu.au/~maire/baobab/baobab.html
http://www.fit.qut.edu.au/~maire/baobab/lecture/index.htm

NTFS Concepts

71

http://tide.it.bond.edu.au/inft320/003/lectures/physical.htm
http://cis.stvincent.edu/carlsond/swdesign/btree/btree.html
http://www.fit.qut.edu.au/~maire/baobab/baobab.html
http://www.fit.qut.edu.au/~maire/baobab/lecture/index.htm

5. Concept - Clusters
5.1. Overview

In NTFS, the Cluster is the fundamental unit of disk usage. The number of sectors that make up a cluster
is always a power of 2, and the number is fixed when the volume is formatted. This number is called the
Cluster Factor and is usually quoted in bytes, e.g. 8KB, 2KB. NTFS addresses everything by its Logical
Cluster Number.

5.1.1. Logical Cluster Number (LCN)

Each cluster in a volume is given a sequential number. This is its Logical Cluster Number. LCN 0 (zero)
refers to the first cluster in the volume (the boot sector).

To convert from an LCN to a physical offset in the volume, multiply the LCN by the Cluster Size.

5.1.2. Virtual Cluster Number (VCN)

Each cluster of a non-resident stream is given a sequential number. This is its Virtual Cluster Number.
VCN 0 (zero) refers to the first cluster of the stream.

To locate the stream on disk, it's necessary to convert from a VCN to an LCN. This is done with the help
of data runs.

5.1.3. Data Runs

Each contiguous block of LCNs is given a Data Run, which contains a VCN, an LCN and a length.
When NTFS needs to to find an object on disk, it looks up the VCN in the Data Runs to get the LCN.

5.2. Notes

5.2.1. Other information

The Cluster Size can be chosen when the volume is formatted.

The Cluster Size for a volume is stored in $Boot. Also defined there is the size, in clusters, of an MFT
File Record and an Index Record.

By using Cluster Numbers, NTFS can address larger disks than if sectors numbers were used.

A list of allowed and default cluster sizes is shown below.

Windows NT

512bytes, 1KB, 2KB or 4KB

Windows 2000, Windows XP

512bytes, 1KB, 2KB, 4KB, 8KB, 16KB, 32KB or 64KB

Table 4.7. Default cluster size

NTFS Concepts

72

Volume Size Default Cluster Size

<512MB Sector size

<1GB 1KB

<2GB 2KB

>2GB 4KB

5.2.2. Questions

Why does NTFS use Virtual Cluster Numbers?

6. Concept - Collation
6.1. Overview

To be able to search and sort objects under NTFS

Table 4.8. Collation types

Value Name Compare the Values as:

0x00 Binary Binary, where the first byte is
most significant

0x01 Filename Unicode strings

0x02 Unicode Unicode strings, except that up-
per case letters should come first

0x10 ULONG An unsigned long (32 bits, little-
endian)

0x11 SID A security identifier

0x12 Security Hash First compare by the Security
Hash, then by Security Identifier

0x13 ULONGS A set of unsiged longs (32 bits,
little-endian)

6.2. Usage
Here are some examples of where various collation rules are used.

Table 4.9. Default collations types for standard indexes

Name Used By

ULONG $SII in file $Secure

SID $O in file $Extend/$Quota

Security Hash $SDH in file $Secure

ULONGS $O in file $Extend/$ObjId

NTFS Concepts

73

6.3. Notes

6.3.1. Questions

When comparing by ULONGS, where is the maximum length specified? Or, can two objects never have
identical ULONGS?

0x13 ULONGS refers to GUIDs TEST

7. Concept - Compression
7.1. Overview

here's a short summary of the mechanism: data. These are compressed using a modified LZ77 algorithm.
The basic idea is that substrings of the block which have been seen before are compressed by referen-
cing the string rather than mentioning it again. For example, Consider the Plain text

#include <ntfs.h>\n
#include <stdio.h>\n

This is compressed to #include <ntfs.h>\n (-18,10)stdio(-17,4)

So the algorithm recognizes that -18 bytes from the current position, it has already seen the text
'#include <'. Then, stdio is new, but '.h>\n' has been seen before.

The interesting details are in the question? How to encode the pair (-18,10), and how to mix this with
plain-text strings. The first thing to understand is that such a pair is recorded in two bytes. Because a
back-reference takes two bytes, there is no point in back-referencing one- or two-byte substrings. This
means the shortest possible substring is 3. This means that length values of 0, 1, and 2 are not possible.
So you can subtract 3 of the length before encoding it. Also, the references are always backward, and
never 0. So you can store them as positive numbers, and subtract one. The first back-reference is stored
as (17,7), and the second one as (16,1).

Given that a block is 4096 in size, you might need 12 bits to encode the back reference. This means that
you have only for bits left to encode the length, allowing for a maximum length of 19. This is not desir-
able as it limits to compression ratio to 1:19. OTOH, if the current offset is, say, 123, a back reference of
-512 is not possible. Some clever MS engineer decided to dynamically allocate more bits for the back-
reference and less for the length. The exact split can be written as a table, or as

for(i=clear_pos-1,lmask=0xFFF,dshift=12;i>=0x10;i>>=1){
lmask >>= 1; /* bit mask for length */
dshift——; /* shift width for delta */

}

Now that we can encode a (offset,length) pair as two bytes, we still have to know whether a token is a
back-reference, or plain-text. This is one bit per token. Eight tokens are grouped together and preceded
with the tags byte. So the group

NTFS Concepts

74

>\n(18,10)stdio

would be encoded as

00000100 > \n 0A 90 s t d i o

(the 1 bit indicates the back reference). As an extreme case, a block of all space (' ') is compressed as

00000010 ' ' FC 0F

or ' ' (-1,4095). This works because you always read data you just stored. As a compression unit consists
of 16 clusters, it usually contains more than one of these blocks. If you want to access the second block,
it would be a waste of time to decompress the first one. Instead, each block is preceded by a 2-byte
length. The lower twelve bits are the length, the higher 4 bits are of unknown purpose.

FIXME: Compression unit's size 2^4 in attribute header.
The compression method is based on independently compressing blocks of X
clusters, where X is determined from the compression_unit value found in the
non-resident attribute record header (more precisely: X = 2^compression_unit
clusters). On Windows NT/2k, X always is 16 clusters (compression_unit = 4).

1) The data in the block is all zero (a sparse block):
This is stored as a sparse block in the run list, i.e. the run list
entry has length = X and lcn = -1. The mapping pairs array actually
uses a delta_lcn value length of 0, i.e. delta_lcn is not present at
all, which is then interpreted by the driver as lcn = -1.
NOTE: Even uncompressed files can be sparse on NTFS 3.0 volumes, then
the same principles apply as above, except that the length is not
restricted to being any particular value.

2) The data in the block is not compressed:
This happens when compression doesn't reduce the size of the block
in clusters. I.e. if compression has a small effect so that the
compressed data still occupies X clusters, then the uncompressed data
is stored in the block.
This case is recognised by the fact that the run list entry has
length = X and lcn >= 0. The mapping pairs array stores this as
normal with a run length of X and some specific delta_lcn, i.e.
delta_lcn has to be present.

3) The data in the block is compressed:
The common case. This case is recognised by the fact that the run
list entry has length L < X and lcn >= 0. The mapping pairs array
stores this as normal with a run length of X and some specific
delta_lcn, i.e. delta_lcn has to be present. This run list entry is
immediately followed by a sparse entry with length = X - L and
lcn = -1. The latter entry is to make up the vcn counting to the
full compression block size X.

In fact, life is more complicated because adjacent entries of the same type
can be coalesced. This means that one has to keep track of the number of
clusters handled and work on a basis of X clusters at a time being one
block. An example: if length L > X this means that this particular run list
entry contains a block of length X and part of one or more blocks of length

NTFS Concepts

75

L - X. Another example: if length L < X, this does not necessarily mean that
the block is compressed as it might be that the lcn changes inside the block
and hence the following run list entry describes the continuation of the
potentially compressed block. The block would be compressed if the
following run list entry describes at least X - L sparse clusters, thus
making up the compression block length as described in point 3 above. (Of
course, there can be several run list entries with small lengths so that the
sparse entry does not follow the first data containing entry with
length < X.)

NOTE: At the end of the compressed attribute value, there most likely is not
just the right amount of data to make up a compression block, thus this data
is not even attempted to be compressed. It is just stored as is.

If you look at the algorithm, you will notice that it will not always reduce the data size. If there are no
back references, each byte plain-text will remain as-is. However, every 8 bytes, a tag bit is inserted,
which then will be zero. So, in the worst case, a block might grow to 4610 bytes (counting the length of
the block). If the block grows in size, it will be stored uncompressed. A length of exactly 4095 is used to
indicate this case. It might be still possible that the following block will compress well, reducing the
total size of the chunk. If it doesn't, the entire chunk is stored uncompressed, which is indicated in the
run list.

> each block is preceded by a 2-byte length. The lower twelve bits are the >length, the higher 4 bits are
of unknown purpose.#

Bit 0x8000 is the flag specifying that the block is compressed. The compression code OR's in the value
0xB000 (if its compressed), but the decompression code only looks at bit 0x8000.

Also, the length is actually stored as (n-3) in the low 12 bits. Actually, (n-1) if you don't count the two
bytes used to store the length itself. So for an uncompressed block the length is stored as 0xFFF, mean-
ing the length is 4096 + 2 more bytes holding the length itself.

A 0x1000 length block compressed to length 0x500 would require 0x502 bytes, and have an advertised
length of 0x4FF.

What I don't know is whether a 16 cluster file that doesn't compress at all requires 17 clusters to store, in
order to accommodate the extra 2 bytes per block.

I believe it will take only 16 clusters. The fact that it is not compressed will be expressed in the run list.
For example, the compressed file will look like

(1000 A) (0 6) //(rel.VCN length)

whereas the uncompressable file will look like

(1000 10)

or

(1000 A) (1040 6)

NTFS Concepts

76

IOW, if you don't have any runs with VCN==0 in the 16 clusters, the chunk is entirely uncompressed
and plain. Given the compression algorithm, it is fairly easy to create such a file:

s=""
for i in range(0,16): #adjust to clusters >512 if necessary

s=s+chr(i)+chr(j)
open("uncompressable","w").write(s)

8. Concept - Data Runs
8.1. Overview

Non-resident attributes are stored in intervals of clusters called runs. Each run is represented by its start-
ing cluster and its length. The starting cluster of a run is coded as an offset to the starting cluster of the
previous run.

Normal, compressed and sparse files are all defined by runs.

The examples start simple, then quickly get complicated.

This is a table written in the content part of a non-resident file attribute, which allows to have access to
its stream.

NB Assume a 1KB cluster size, throughout. And little endian disk storage.

8.2. Layout
The runlist is a sequence of elements: each element stores an offset to the starting LCN of the previous
element and the length in clusters of a run.

To save space, Offset and Length are variable size fields (probably up to 8 bytes), and an element is
written in this crunched format:

Table 4.10. Layout of a data run

Offset in nibble to
the beginning of
the element

Size Description

0 1 F=Size of the Offset field

1 1 L=Size of the Length field

2 2*L Length of the run

2+2*L 2*F Offset to the starting LCN of the previous element

Offset to the starting LCN of the previous element

This is a signed value. For the first element, consider the offset as relative to the LCN 0, the beginning
of the volume.

The layout of the runlist must take account of the data compression: the set of VCNs containing the

NTFS Concepts

77

stream of a compressed file attribute is divided in compression units (also called chunks) of 16 clusters:
VCNs 0 to 15 constitutes the 1st compression unit, VCNs 16 to 31 the 2nd one, and so on... For each
compression unit,

• The alpha stage of compression is very simple and is independent of the compression engine used to
compress the file attribute: if all the 16 clusters of a compression unit are full of zeroes, this com-
pression unit is called a sparse unit and is not physically stored. Instead, an element with no Offset
field (F=0, the Offset is assumed to be 0 too) and a Length of 16 clusters is put in the runlist.

• Else, the beta stage of compression is done by the compression engine used to compress the file at-
tribute: if the compression of the unit is possible, N (< 16) clusters are physically stored, and an ele-
ment with a Length of N is put in the runlist, followed by another element with no Offset field (F=0,
the Offset is assumed to be 0 too) and a Length of 16 - N.

• Else, the unit is not compressed, 16 clusters are physically stored, and an element with a Length of
16 is put in the runlist.

In practice, this is a bit more complicated because some of the element can be gathered. But let's take an
...

8.2.1. ...Example

We have to decode the following runlist:

Runlist:
21 14 00 01 11 10 18 11 05 15 01 27 11 20 05

Decode
0x14 at 0x100 21 0x100, 0x14
0x10 at + 0x18 11 0x18, 0x10
0x05 at + 0x15 11 0x15, 0x05
0x27 at + none 01 0x27, none
0x20 at + 0x05 11 0x05, 0x20

Absolute LCNs
0x14 at 0x100
0x10 at 0x118
0x05 at 0x12D
0x27 at none
0x20 at 0x132

Regroup
0x10 at 0x100

0x04 at 0x110
0x0C at 0x118

0x04 at 0x118
0x05 at 0x12D
0x07 at none

0x10 at none

0x10 at none

0x10 at 0x132

0x10 at 0x142

NTFS Concepts

78

Compression unit beginning at VCN 0x0
0x10 clusters at LCN 0x100
Unit not compressed

Compression unit beginning at VCN 0x10
0x4 clusters at LCN 0x110
0xC clusters at LCN 0x118
Unit not compressed

Compression unit beginning at VCN 0x20
0x4 clusters at LCN 0x124
0x5 clusters at LCN 0x12D
0x7 unused clusters: compressed unit

Compression unit beginning at VCN 0x30
0x10 zeroed clusters: sparse unit

Compression unit beginning at VCN 0x40
0x10 zeroed clusters: sparse unit

Compression unit beginning at VCN 0x50
0x10 clusters at LCN 0x132
Unit not compressed

Compression unit beginning at VCN 0x60
0x10 clusters at LCN 0x142
Unit not compressed

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

file.txt 31KB bytes (disk has a 1KB cluster size)

it's stored at clusters 10-26, 45-49, 100-108

17 clusters at LCN 10
5 clusters at LCN 45
9 clusters at LCN 100

next make the offsets relative

17 clusters at LCN 10
5 clusters at LCN 45
9 clusters at LCN 100

is encoded as

11

working in unit of 16 clusters
relative offsets (including -ve)
compressed sparse
variable length structures
stored as:
save space implies wherever MFT places
data it's best not to spread it too far.

-ve implies an offset of +129 would have to use two bytes
therefore -10 = 0xF6
0x80 = -128
0XFF7F = -129

21 14 00 01 11 10 18 11 05 15 01 27 11 20 05

NTFS Concepts

79



8.3. data runs
Length and starting cluster are variable size fields. The first byte of a run indicates the size of both. The
size of the offset is stored in the high nibble, and the size of the length in the low nibble.

For compressed or sparse runs, the offset is 0, and the size of the offset is also 0. Each compression unit
starts at a multiple of 16 clusters. If compression is possible, at the VCN of a unit will be one or more
data runs followed by an empty run. If there are data runs for more than 16 clusters, the unit was not
compressible. If there is no data run at all (only a large empty run), the unit Consists of All zeroes.

Example: 21 20 ED 05 22 48 07 48 22 21 28 C8 DB
First run: 20 clusters starting from 5ED (5ED to 60D)
2nd run: 748 clusters starting from 5ED+2248 (2835 to 2F7D)
3rd run: 28 clusters starting from 2835+DBC8 (3FD to 425)

Note that the offset is interpreted as signed value.

Take a file of size 0x80 clusters (anywhere on disk). This is represented by VCN (virtual cluster num-
bers) 0x00 to 0x7F. These VCNs are mapper to LCN (logical cluster numbers) in runs (or extents), eg 21
80 30 60 00.

These runs are variable length, terminated with a zero. The low nibble of the first byte determines the
length of the next number (1 byte) namely 80. The high nibble determines the length of the following
number (2 bytes) namely 6030.

Outcome: 80 clusters, starting at cluster 6030.

The "sizes" are stored in one byte. The length is unsigned. The offset is signed and relative to the previ-
ous offset.

11 30 60 - 21 10 00 01 - 11 20 E0 - 00

Run 1 length 30 offset 60 (first run relative to 0)
Run 2 length 10 offset 100 + 60
Run 3 length 20 offset 160 - 20 (EO == -20)

==
80

Files are represented by a set of VCNs. Sparse files, simply, have VCNs missing, eg

21 09 F5 47 9 clusters from 47F5
01 07 7 clusters from nowhere (0)
11 07 09 7 clusters from 47F5 + 9
====
0x17

123456789ABCDEFG1234... VCN
RRRRRRRRRZZZZZZZRRRR... Real/Zero

Compresses files are first broken into blocks of 16 (0x10) clusters. Imagine:

VCN0123...

NTFS Concepts

80



XXXXXXXXXXOOOOO X=DATA O=SPACE

The data is compressed, here, into just ten clusters (If we can't save 1 cluster in 16, we don't bother) The
above is coded as:

21 0A 10 F6 10 clusters of compressed data at F610
01 06 6 clusters of nothing to round up this block to 16

The 6 extra clusters aren't actually taking up any disk space. The VCNs are bunched into 16s. {{ If a
block cannot be compressed, it would be represented by:

21 10 10 F6 16 clusters of compressed data at F610

FIXME:
In fact, life is more complicated because adjacent entries of the same type
can be coalesced. This means that one has to keep track of the number of
clusters handled and work on a basis of X clusters at a time being one
block. An example: if length L > X this means that this particular run list
entry contains a block of length X and part of one or more blocks of length
L - X. Another example: if length L > X, this does not necessarily mean that
the block is compressed as it might be that the lcn changes inside the block
and hence the following run list entry describes the continuation of the
potentially compressed block. The block would be compressed if the
following run list entry describes at least X - L sparse clusters, thus
making up the compression block length as described in point 3 above. (Of
course, there can be several run list entries with small lengths so that the
sparse entry does not follow the first data containing entry with
length < X.)

NOTE: At the end of the compressed attribute value, there most likely is not
just the right amount of data to make up a compression block, thus this data
is not even attempted to be compressed. It is just stored as is.

Compressed and sparse runs can be intermixed. All this to save space.

8.4. Examples

8.4.1. Example 1 - Normal, Unfragmented File

Data runs: 21 18 34 56 00

Regrouped: 21 18 34 56 - 00

Table 4.11. Parsed data runs: Example 1 - Normal, Unfragmented File

Nu
m

Group Header Data

Length size Offset size Length Offset

1 21 18 34 56 1 byte 2 bytes 0x18 (1
byte)

0x5634 (2 bytes)

NTFS Concepts

81



Nu
m

Group Header Data

Length size Offset size Length Offset

2 00 End

Summary:

• 0x18 Clusters @ LCN 0x5634

Therefore, Data1 is a unfragmented file, of size 0x18 clusters, starting at LCN 0x5634.

8.4.2. Example 2 - Normal, Fragmented File

Data runs: 31 38 73 25 34 32 14 01 E5 11 02 31 42 AA 00 03 00

Regrouped: 31 38 73 25 34 - 32 14 01 E5 11 02 - 31 42 AA 00 03 - 00

Table 4.12. Parsed data runs: Example 2 - Normal, Fragmented File

Nu
m

Group Header Data

Length size Offset size Length Offset

1 31 38 73 25 34 1 byte 3 bytes 0x38 0x342573 (3 bytes)

2 32 14 01 E5 11 02 2 bytes 3 bytes 0x114 0x363758 (0x211E5 relative to
0x342573)

3 31 42 AA 00 03 1 byte 3 bytes 0x42 0x393802 (0x300AA relative to
0x363758)

4 00 End

Summary:

• 0x38 Clusters @ LCN 0x342573

• 0x114 Clusters @ LCN 0x363758

• 0x42 Clusters @ LCN 0x393802

Therefore, Data2 is a fragmented file, of size 0x18E clusters, with data blocks at LCNs 0x342573,
0x363758 and 0x393802.

8.4.3. Example 3 - Normal, Scrambled File

Data runs: 11 30 60 21 10 00 01 11 20 E0 00

Regrouped: 11 30 60 - 21 10 00 01 - 11 20 E0 - 00

Table 4.13. Parsed data runs: Example 3 - Normal, Scrambled File

NTFS Concepts

82



Nu
m

Group Header Data

Length size Offset size Length Offset

1 11 30 60 1 byte 1 byte 0x30 (1
byte)

0x60 (1 byte)

2 21 10 00 01 1 byte 2 bytes 0x10 0x160 (0x100 relative to 0x60)

3 11 20 E0 1 byte 1 byte 0x20 0x140 (-0x20 relative to 0x160)

4 00 End

Summary:

• 0x30 Clusters @ LCN 0x60

• 0x10 Clusters @ LCN 0x160

• 0x20 Clusters @ LCN 0x140

Therefore, Data3 is a badly fragmented file of size 0x60 clusters, with data blocks at LCNs 0x60, 0x160
and 0x140. Furthermore, the third block of data is physically located between the first and second
blocks. (The third run has a negative offset, placing it before the previous run).

8.4.4. Example 4 - Sparse, Unfragmented File

Data runs: 11 30 20 01 60 11 10 30 00

Regrouped: 11 30 20 - 01 60 - 11 10 30 - 00

Table 4.14. Parsed data runs: Example 4 - Sparse, Unfragmented File

Nu
m

Group Header Data

Length size Offset size Length Offset

1 11 30 20 1 byte 1 byte 0x30 (1
byte)

0x20 (1 byte)

2 01 60 1 byte 0 bytes 0x60 N/A

3 11 10 30 1 byte 1 byte 0x10 0x50 (0x30 relative to 0x20)

4 00 End

Summary:

• 0x30 Clusters @ LCN 0x20

• 0x60 Clusters (sparse)

• 0x10 Clusters @ LCN 0x50

Therefore, Data4 is a sparse, unfragmented file, of size 0xA0 clusters, with data blocks at LCNs 0x20
and 0x50.

This file has a sparse part in the middle of size 0x60 clusters. It takes up no space on disk, but it it rep-

NTFS Concepts

83



resented by 0x60 VCNs.

8.4.5. Example 5 - Compressed, Unfragmented File

Data runs: 11 08 40 01 08 11 10 08 11 0C 10 01 04 00

Regrouped: 11 08 40 - 01 08 - 11 10 08 - 11 0C 10 - 01 04 - 00

Table 4.15. Parsed data runs: Example 5 - Compressed, Unfragmented File

Nu
m

Group Header Data

Length size Offset size Length Offset

1 11 08 40 1 byte 1 byte 0x08 (1
byte)

0x40 (1 byte)

2 01 08 1 byte 0 bytes 0x08 N/A

3 11 10 08 1 byte 1 byte 0x10 0x48 (0x08 relative to 0x40)

4 11 0C 10 1 byte 1 byte 0x0C 0x58 (0x10 relative to 0x48)

5 01 04 1 byte 0 bytes 0x04 N/A

6 00 End

Summary:

• 0x08 Clusters @ LCN 0x40

• 0x08 Clusters (sparse)

• 0x10 Clusters @ LCN 0x48

• 0x0C Clusters @ LCN 0x58

• 0x04 Clusters (sparse)

Therefore, Data5 is a compressed, unfragmented, file of length 0x30, with data blocks at LCNs 0x40,
0x48 and 0x58.

The data, as stored on disk, is contiguous. The sparse runs pad out the compression units to blocks of 16
clusters (0x10).

8.4.6. Example 6 - Compressed, Sparse, Fragmented File

brain damaged file

9. Concept - Directory
9.1. Overview

Under NTFS every object on the volume is a file, even directories. A directory is an index of filenames.

9.2. Attributes

NTFS Concepts

84



Table 4.16. A directory record attributes

Type Description Name

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME dirname

0x50 $SECURITY_DESCRIPTOR

0x90 $INDEX_ROOT $I30

0xA0 $INDEX_ALLOCATION $I30

0xB0 $BITMAP $I30

9.2.1.

9.2.1.1. Index Entry

An index is a list of index entries. Each entry contains the name of the file, the standard information and
a pointer to the security information. The correct starting place is the Index Entry.

9.2.1.2. Index Root

This attribute, which is always resident, holds several index entries. It forms the root of the index tree.

9.2.1.3. Index Allocation

A set of runs telling the system where the other indexes are. (preposition!)

9.2.1.4. Index Bitmap

Which clusters (indexes) are in use.

A directory can even have a named data stream

9.3. Definition
From an human's point of view, a directory is a particular kind of file that can contain other files. It is a
file folder, used in a nested way to create a logical file hierarchy on a volume.

9.4. Properties
From NTFS' point of view, a directory is an index of file names, or more accurately a sequence of index
entries containing a filename attribute. An index entry is created for each file name attribute of each file
contained in the folder. This kind of index entries can be compared together using the alphabetical order
on their upper-cased (thanks to $UpCase) file name attribute.

A directory has no data attribute. But, as an index, it has instead three other file attributes: index root, in-
dex allocation, and bitmap. The index is stored in the nodes of a B+ tree in the following manner:

• Each node of the tree contains one or several index entries. Within a node, index entries are sorted in
increasing order

NTFS Concepts

85



• Each index entry may point to another (sub-)node containing only lower index entries

• The root node is in the stream of the index root attribute, the other (sub-)nodes are index buffers.

9.5. Interest
When an application reads a directory, NTFS returns a list of file names which is already sorted.

The B+ tree structure (which is used in HPFS too), when built in a balanced way, is far more efficient
than a linear structure to perform a file name lookup in a folder containing a large number of files.

Although the duplication of the stream of the indexed attribute in an index entry can cost some time, it is
worthy because you can browse an index without actually opening all the indexed files (FAT and HPFS
do that, too).

In a directory, the three file attributes: index root, index allocation, and bitmap are named "$I30", and a
directory is just an Index of file attributes whose type is 30. But NTFS has been thought as a database
filesystem, and it can actually create indexes based on any file attribute that is always resident. E.g., you
could create a new file attribute labeled "author name", and sort your files according to that criteria.

10. Concept - File
10.1. Overview

It is composed of attributes including its name and its data.

10.2. Attributes

Table 4.17. A file record attributes

Type Description Name

0x10 $STANDARD_INFORMATION

0x30 $FILE_NAME filename

0x50 $SECURITY_DESCRIPTOR

0x80 $DATA [Unnamed]

10.2.1. Standard Information

This contains the DOS-style file permission, such as read-only and archive. It also contains four differ-
ent types of modification time.

• File creation time

• Last modification time

• Last modification time for FILE record

• Last access time

NTFS Concepts

86



10.2.2. File Name

The file's name is stored as an attribute, too. A file can have several filenames. This is Windows' equi-
valent to hard linking files together.

10.2.3. Security Descriptor

This stores all of Windows' permissions. ACLs, ACEs, auditing.

May not exist on Win2K (std info, $secure)

10.2.4. Data

This, finally, is the actual data of the file. It, too, is stored in an attribute

unnamed data stream compulsory (chkdsk will put it back if missing)
named data streams optional (any limit to the number?)

10.3. Named Data Streams

access with "jim.txt:stream"

Table 4.18. Fictional named data streams

Type Description Name

0x80 $DATA icon

0x80 $DATA author

10.4. Summary Information
Windows 2000 introduced the idea of summary information on files. This information is stored as a set
of four named data streams.

Description

• Title

• Subject

• Category

• Keywords (multi-line)

NTFS Concepts

87



• Comments (multi-line)

Origin

• Source

• Author

• Revision Number

Table 4.19. Summary Information named data streams

Type Description Name

0x80 $DATA {4c8cc155-6c1e-11d1-8e41-00c04fb9386d}

0x80 $DATA ^EDocumentSummaryInformation

0x80 $DATA ^ESebiesnrMkudrfcoIaamtykdDa

0x80 $DATA ^ESummaryInformation

N.B. Three of the names begin with CTRL-E (0x05). This is probably to discourage people from reading
the streams directly.

The first stream {4c.. is always empty. This is probably just a marker to

Table 4.20. contents of Summary Information named data streams

Data Stream Summary Field Data Type Code

^EDocumentSummaryInformation Unknown1 Numeric? 0x00

Unknown2 Numeric 0x01

Category ASCII 0x02

^ESebiesnrMkudrfcoIaamtykdDa Unknown3 Numeric? 0x00

Unknown4 Numeric? 0x01

Source Unicode 0x04

^ESummaryInformation Unknown5 Numeric? 0x00

Unknown6 Numeric? 0x01

Title ASCII 0x02

Subject ASCII 0x03

Author ASCII 0x04

Keywords ASCII 0x05

Comments ASCII 0x06

Revision Number ASCII 0x09

11. Concept - File Record

NTFS Concepts

88



11.1. Overview
The MFT is a set of FILE records. Each file of the volume is completely described by one or more of
these FILE Records. File Records are equivalent to inodes in Unix terminology. The first FILE Record
that describes a given file is called the Base FILE record and the others are called Extension FILE Re-
cords.

A FILE Record is built up from a header, several variable length attributes and an end marker (simply
0xFFFFFFFF).

link table to notes

See also: Attributes, Standard Attribute Header, $MFT, $Boot, File, Fixup, Attribute Id, Directory,

11.2. Layout
FILE Record

Header

Attribute

Attribute

...

End Marker (0xFFFFFFFF)

Table 4.21. Layout of a file record

Offset Size OS Description

0x00 4 Magic number 'FILE'

0x04 2 Offset to the update sequence

0x06 2 Size in words of Update Sequence Number & Array (S)

0x08 8 $LogFile Sequence Number (LSN)

0x10 2 Sequence number

0x12 2 Hard link count

0x14 2 Offset to the first Attribute

0x16 2 Flags

0x18 4 Real size of the FILE record

0x1C 4 Allocated size of the FILE record

0x20 8 File reference to the base FILE record

0x28 2 Next Attribute Id

0x2A 2 XP Align to 4 byte boundary

0x2C 4 XP Number of this MFT Record

2 Update Sequence Number (a)

2S-2 Update Sequence Array (a)

(a) The offset to these two fields depends on your operating system.

NTFS Concepts

89



$LogFile Sequence Number (LSN)

This is changed every time the record is modified.

Sequence Number

Number of times this mft record has been reused.

N.B. The increment (skipping zero) is done when the file is deleted.

N.B. If this is set to zero it is left as zero.

Hard Link Count

Number of hard links, i.e. the number of directory entries referencing this record.

N.B. Only used in mft base records.

Flags

Table 4.22. File record flags

Flag Description

0x01 Record is in use

0x02 Record is a directory

0x04 Don't know

0x08 Don't know

Real / Allocated Size

The Allocated Size is how much space the Record takes up on disk. This should be a multiple of the
cluster size and should probably be equal to the size of an MFT File Record. The Real Size is a count of
how many bytes of the Record are actually used.

N.B. The Real Size will be padded to an 8 byte boundary.

Base MFT Record

This is zero for Base MFT Records. When it is not zero it is a MFT Reference pointing to the Base MFT
Record to which this Record belongs. The Base Record contains the information about the Extension
Record. This information is stored in an ATTRIBUTE_LIST attribute.

Next Attribute Id

The Attribute Id that will be assigned to the next Attribute added to this MFT Record.

N.B. Incremented each time it is used.

N.B. Every time the MFT Record is reused this Id is set to zero.

N.B. The first instance number is always 0.

The master file table record consists of a header and the attribute list. It has a size of 400 (=1K), or the
cluster size (whichever is larger). The header has the following fields:

NTFS Concepts

90



11.3. Notes
The attribute list is of variable length and terminated with FFFFFFFF. For 1K MFT records, the attribute
list starts at offset 0x30.

The sequence number is a circular counter (skipping 0) describing how many
times the referenced mft record has been (re)used. This has to match the
sequence number of the mft record being referenced, otherwise the reference
is considered stale and removed (FIXME: only ntfsck or the driver itself?).

If the sequence number is zero it is assumed that no sequence number
consistency checking should be performed.

FIXME: The mft zone is defined as the first 12% of the volume. This space is
reserved so that the mft can grow contiguously and hence doesn't become
fragmented. Volume free space includes the empty part of the mft zone and
when the volume's free 88% are used up, the mft zone is shrunk by a factor
of 2, thus making more space available for more files/data. This process is
repeated everytime there is no more free space except for the mft zone until
there really is no more free space.

The mft record header present at the beginning of every record in the mft.
This is followed by a sequence of variable length attribute records which
is terminated by an attribute of type $END which is a truncated attribute
in that it only consists of the attribute type code $END and none of the
other members of the attribute structure are present.

When (re)using the mft record, we place the update sequence array at this
offset, i.e. before we start with the attributes. This also makes sense,
otherwise we could run into problems with the update sequence array
containing in itself the last two bytes of a sector which would mean that
multi sector transfer protection wouldn't work. As you can't protect data
by overwriting it since you then can't get it back...
When reading we obviously use the data from the ntfs record header.

The sequence of attributes part

This is a sequence of file attributes that has a variable length. In each FILE record, the sequence is
ordered by increasing order of the attribute type. The sequence is terminated with FF FF FF FF.

Size defined in $Boot.
A FILE record is 1 KB large or the cluster size if larger (as far as Helen is
concerned, its maximum size is 4 KB, but Windows NT 4 limit is 64 KB). It falls into
2 parts:

Extension FILE records are used when all information about a file doesn't fit into the base FILE record
(e.g. if the sequence of file attributes grows because the file has a lot of file attributes or because the data
attribute of the file has a long runlist because its stream is very fragmented). Only the base FILE record
is used for referencing the file it describes. Since the type of the Attribute List file attribute is small
enough, we are sure that this file attribute will be in the base FILE record. And this file attribute
provides the references to all the extension FILE records describing the file.

When a file is deleted, NTFS can't simply remove the associated FILE records from the MFT, otherwise
FILE record numbers wouldn't be constant over time, and all file references would have to be updated!
Instead, the in-use flag of a FILE record indicates when it is no longer in use. When a file is created, an
unused FILE record can be re-used for it, but its sequence number is incremented by one. This mechan-

NTFS Concepts

91



ism allow NTFS to check that file references don't point to deleted files.

seq num = inode for 0x00 < i < 0x10 (inode 0 (MFT) has seq num of 1)

see also attribute id page and file reference page

flags 1 in use, 2 dir, 4 ???, 8??? (4+8 ARE used)

12. Concept - File Reference
12.1. Overview

A unique identifier for a FILE record in the MFT.

12.2. Layout

Table 4.23. Layout of a file reference

Offset Size Description

0x00 6 FILE record number

0x06 2 Sequence number

12.3. Notes

12.3.1. Sequence number

If the filesystem is consistent, this number must match the sequence number of the FILE record refer-
enced by the FILE record number.

mft references (aka file references or file record segment references) are
used whenever a structure needs to refer to a record in the mft.

A reference consists of a 48-bit index into the mft and a 16-bit sequence
number used to detect stale references.

when is the seq num incremented

13. Concept - Filename Namespace
13.1. Overview

Old versions of the FAT filesystem had strict limits on filenames. Many characters were forbidden, and
the length was restricted to 11 characters (a small namespace). Newer versions of FAT allowed more
characters and longer filenames. NTFS has almost no restrictions.

NTFS Concepts

92



Filenames are given a flag to show which namespace the name belongs to. In order to support old ap-
plications, NTFS allocates a short DOS-friendly name to any file with an DOS-incompatible name.

13.2. Possible Namespaces
0: POSIX

This is the largest namespace. It is case sensitive and allows all Unicode characters except for NULL (0)
and Forward Slash '/'. The maximum name length is 255 characters. N.B. There are some characters, e.g.
Colon ':', which are valid in NTFS, but Windows will not allow you to use.

1: Win32

Win32 is a subset of the POSIX namespace and is case insensitive. It uses all the Unicode characters,
except: '"' '*' '/' ':' '<' '>' '?' '\' '|' N.B. Names cannot end with Dot '.', or Space ''.

2: DOS

DOS is a subset of the Win32 namespace, allowing only 8 bit upper case characters, greater than Space
'', and excluding: '"' '*' '+' ',' '/' ':' ';' '<' '=' '>' '?' '\'. N.B. Names must match the following pattern: 1 to 8
characters, then '.', then 1 to 3 characters.

3: Win32 &DOS

This namespace means that both the Win32 and the DOS filenames are identical and hence have been
saved in this single filename record.

To convert a POSIX or Win32 filename to a DOS-friendly filename, follow these steps:

1. Remove all Unicode characters

2. Remove all '.' but the last one if it is not the first character

3. Uppercase all letters

4. Remove forbidden characters

5. Truncate everything before the potential '.' to 6 characters, and add the string "~1"

6. Truncate everything after the potential '.' to 3 characters

7. While the name already exists, increment the string "~1"

8. N.B. Step 7 means that although the generated DOS name is unique, it is impossible to deduce it
from the Win32 name only.

14. Concept - Fixup
14.1. Overview

The smallest unit of disk space that NTFS uses is a Cluster. This can vary from one sector to 128 sec-
tors, the usual number is 8 (4KB). Naturally this is dependent on the sector and Cluster. sizes declared in
$Boot.

Because a single sector could fail, it's important for NTFS to be able to detect errors in a cluster. For this

NTFS Concepts

93



purpose the sectors have Fixups, which are kept in an Update Sequence Array.

Many important Metadata Records use fixups to protect data integrity

• FILE Records in the $MFT

• INDX Records in directories and other indexes

• RCRD Records in the $LogFile

• RSTR Records in the $LogFile

14.2. What Does It Do?
The header of each of these records contains a Update Sequence Number and a buffer. The last two
bytes of each sector of the record are copied into the buffer and the Update Sequence Number is written
in their place.

When the record is read, the Update Sequence Number is read from the header and compared against the
last two bytes of each sector. If it succeeds, then it copies the bytes in the buffer back to their original
places.

14.3. Example
Here's an example before the fixup is applied, with a cluster size of 2KB (4 Sectors).

Table 4.24. Fixup example: before

Offset Data Description

0x0000 ... Header

0x0028 CD AB Update Sequence Number

0x002A 00 00 00 00 00 00 00 00 Update Sequence Array

... ...

0x01F8 11 12 13 14 15 16 17 18 End of Sector 1

... ...

0x03F8 21 22 23 24 25 26 27 28 End of Sector 2

... ...

0x05F8 31 32 33 34 35 36 37 38 End of Sector 3

... ...

NTFS Concepts

94



0x07F8 41 42 43 44 45 46 47 48 End of Sector 4

Here the Update Sequence Number is 0xABCD and the Update Sequence Array is still empty.

Table 4.25. Fixup example: after

Offset Data Description

0x0000 ... Header

0x0028 CD AB Update Sequence Number

0x002A 17 18 27 28 37 38 47 48 Update Sequence Array

... ...

0x01F8 11 12 13 14 15 16 CD AB End of Sector 1

... ...

0x03F8 21 22 23 24 25 26 CD AB End of Sector 2

... ...

0x05F8 31 32 33 34 35 36 CD AB End of Sector 3

... ...

0x07F8 41 42 43 44 45 46 CD AB End of Sector 4

The last two bytes of each sector have been copied into the Update Sequence Array, and the Update Se-
quence Number has been written over the last two bytes of each sector.

14.4. The Details

14.4.1. Writing

Before writing a fixup-protected record:

1. Add one to the Update Sequence Number (0x0000 must be skipped)

2. For each sector, copy the last two bytes into the Update Sequence Array

3. Write the new Update Sequence Number to the end of each sector

4. Write the record to disk

NTFS Concepts

95



14.4.2. Reading

When reading a fixup-protected record:

1. Read the record from disk

2. Check the magic number is correct

3. Read the Update Sequence Number

4. Compare it against the last two bytes of every sector

5. Copy the contents of the Update Sequence Array to the correct places

6. If any of the checks fail when reading, it could mean there is: a bad sector, disk corruption or a fault
in the driver.

15. Concept - Index Header
15.1. Overview

Every Index Record has a standard header and a set of blocks containing an Index Key and Index Data.

The size of an Index Record is defined in $Boot and always seems to be 4KB.

15.2. Layout

15.2.1. Standard Index Header

Table 4.26. Layout of a Standard Index Header

Offset Size Description

0x00 4 Magic number 'INDX'

0x04 2 Offset to the Update Sequence

0x06 2 Size in words of the Update Sequence Number &Array (S)

0x08 8 $LogFile sequence number

0x10 8 VCN of this INDX buffer in the Index Allocation

0x18 4 Offset to the Index Entries (a)

0x1C 4 Size of Index Entries (a)

0x20 4 Allocated size of the Index Entries (a)

0x24 1 1 if not leaf node (b)

0x25 3 Padding (always zero)

0x28 2 Update sequence

0x2A 2S-2 Update sequence array

(a) These values are relative to 0x18
(b) Has children

NTFS Concepts

96



15.3. Notes

15.3.1. List of Common Indexes

Table 4.27. List of Common Indexes

Name Index Of Description

$I30 Filenames Used by Directories

$SDH Security Descriptors $Secure

$SII Security Ids $Secure

$O Object Ids $ObjId

$O Owner Ids $Quota

$Q Quotas $Quota

$R Reparse Points $Reparse

15.3.2. Other Information

There is no information contained in the Index Record describing what the index is storing (this is kept
in the Index Root).

16. Concept - Index Record
16.1. Overview

This is only applicable to a file index ($I30)

indx help describe as "index = key + data"

given an INDX record, it's difficult to work out what's
being indexed (that info is in the index root)

16.2. Definition
This is a sub-node of the B+ tree that implements an index (e.g. a directory). It is stored in the stream of
the index allocation attribute associated to the index it belongs to.

16.3. Layout
An INDX buffer is at least 2 KB large or the cluster size if larger (this seems to be a per-index paramet-
er). It falls into 2 parts:

16.3.1. The header part

this ISN'T just the header...

Table 4.28. Layout of an Index record header

NTFS Concepts

97



Offset Size Description

~ ~ Standard Index Header

0x00 8 MFT Reference of the file

0x08 2 Size of this index entry

0x0A 2 Offset to the filename

0x0C 2 Index Flags

0x0E 2 Padding (align to 8 bytes)

0x10 8 MFT File Reference of the parent

0x18 8 File creation time

0x20 8 Last modification time

0x28 8 Last modification time for FILE record

0x30 8 Last access time

0x38 8 Allocated size of file

0x40 8 Real size of file

0x48 8 File Flags

0x50 1 Length of filename (F)

0x51 1 Filename namespace

0x52 2F Filename

2F+0x52 P Padding (align to 8 bytes)

P+2F+0x52 8 VCN of index buffer with sub-nodes

N.B. the filename is not null terminated
surely the flags can't be 8 bytes long
table for the flags
VCN of ib only exists when flags&1
last entry has a size of 0x10 (just large enough
for the flags (and a mft ref of zero))

16.3.2. The sequence of index entries part

This is a sequence of index entries similar to the one found in the index root attribute.

The index entry has the following structure:

Index entry flags (16-bit).

INDEX_ENTRY_NODE = cpu_to_le16(1), This entry contains a sub-node,
i.e. a reference to an index
block in form of a virtual
cluster number (see below).

INDEX_ENTRY_END = cpu_to_le16(2), This signifies the last entry in
an index block. The index entry
does not represent a file but it
can point to a sub-node.

This is an index entry. A sequence of such entries follows each INDEX_HEADER
structure. Together they make up a complete index. The index follows either
an index root attribute or an index allocation attribute.

NTFS Concepts

98



NOTE: Before NTFS 3.0 only filename attributes were indexed.

Most entries are not valid (and present) if the entry is the last one. This entry does not represent a file
and is used only for subnodes. The pointer to the subnode buffer is only present if the entry has sub-
nodes.

17. Concept - Links
17.1. Overview

17.2. Interest
NTFS doesn't manage POSIX symbolic links. Nevertheless, this file attribute let us think that NTFS will
manage symbolic links (or Reparse point, in Microsoft terminology) in Windows NT 5.0, like all mod-
ern Unix filesystems (e.g. Ext2, the Linux filesystem) do.

17.3. Questions
What is the role and the layout of the stream of this file attribute?

NTFS represents POSIX-style hard links as files with multiple filename
NTFS represents hard links with multiple filenames.
This is different to one file with names in different namespaces.
Delete a name from a hard linked file and only the name will be removed.

18. Concept - Restart
18.1. Overview

Each copy of the restart area is 4KB in size, and has the following structure:

Offset(length) Description
0(4) Magic number 'RSTR'
1E(12) Fixup
30(4) LSNa
58(4) LSNb
60(4) LSNc (==LSNa?)
6C(1) Volume clear flag
78(8) Unicode string 'NTFS'

The purpose of the various LSNs is unclear. It appears that the data around offset 3C deal with the clear/
dirty state of the volume, too.

19. Concept - SID

NTFS Concepts

99



19.1. Overview
There are several SIDs reserved for NT.

link back to sec page

sec

S-1-5-21-646518322-1873620750-619646970-1110
S for security id
1 Revision level
5 Identifier Authority (48 bit) 5 = logon id
21 Sub-authority (21 = nt non unique)
646518322 SA
1873620750 SA domain id
619646970 SA
1110 user id

Table 4.29. Common well known SIDs

SID Description

S-1-5-32-544 Local admin.

S-1-1-0 World (everybody)

S-1-5-21 NT non-unique ids

Identifier Authorities

Table 4.30. Identifier Authorities

Identifier Authority Abbr.

Null SID S-1-0

World SID S-1-1

Local SID S-1-2

Creator SID S-1-3

Non-unique S-1-4

NT SID S-1-5

Relative Identifiers (RIDs)

These relative identifiers (RIDs) are used with the above identifier
authorities to make up universal well-known SIDs.

Note: The relative identifier (RID) refers to the portion of a SID, which
identifies a user or group in relation to the authority that issued the SID.
For example, the universal well-known SID Creator Owner ID (S-1-3-0) is
made up of the identifier authority SECURITY_CREATOR_SID_AUTHORITY (3) and

NTFS Concepts

100



the relative identifier SECURITY_CREATOR_OWNER_RID (0).

Relative Identifiers

Table 4.31. Relative Identifiers

Relative Identifier Code SID

Null 0 S-1-0-0

World 0 S-1-1-0

Local 0 S-1-2-0

Creator Owner 0 S-1-3-0

Creator Group 1 S-1-3-1

Creator Owner Server 2 S-1-3-2

Creator Group Server 3 S-1-3-3

Dialup 1 S-1-5-1

Network 2 S-1-5-2

Batch 3 S-1-5-3

Interactive 4 S-1-5-4

Logon Ids 5 S-1-5-5-X-Y

Service 6 S-1-5-6

Anonymous Logon 7 S-1-5-7

Proxy 8 S-1-5-8

Enterprise Controllers 9 S-1-5-9

Server Logon 9 S-1-5-9

Principal Self 10 S-1-5-10

Authenticated User 11 S-1-5-11

Restricted Code 12 S-1-5-12

Terminal Server 13 S-1-5-13

Local System 18 S-1-5-18

NT Non-unique 21 S-1-5-21

Builtin Domain 32 S-1-5-32

Well-known domain relative sub-authority values (RIDs).

Domain Users

Table 4.32. Domain Users

Domain User Code

Admin 500

Guest 501

Kerberos Target 502

NTFS Concepts

101



Domain Groups

Table 4.33. Domain Groups

Domain Group Code

Admins 512

Users 513

Guests 514

Computers 515

Controllers 516

Cert Admins 517

Schema Admins 518

Enterprise Admins 519

Policy Admins 520

Domain Aliases

Table 4.34. Domain Aliases

Domain Alias Code

Admins 544

Users 545

Guests 546

Power Users 547

Account Ops 548

System Ops 549

Print Ops 550

Backup Ops 551

Replicator 552

RAS Servers 553

Pre W2K Comp Access 554

Universal well-known SIDs

Table 4.35. Universal well-known SIDs

SID Abbr.

Null S-1-0-0

World S-1-1-0

Local S-1-2-0

Creator Owner S-1-3-0

Creator Group S-1-3-1

NTFS Concepts

102



SID Abbr.

Creator Owner Server S-1-3-2

Creator Group Server S-1-3-3

Non-unique IDs S-1-4

NT well-known SIDs

Table 4.36. NT well-known SIDs

SID Abbr.

NT Authority S-1-5

Dialup S-1-5-1

Network S-1-5-2

Batch S-1-5-3

Interactive S-1-5-4

Service S-1-5-6

Anonymous Logon (Null Logon) S-1-5-7

Proxy S-1-5-8

Server Logon (Domain Controller) S-1-5-9

Self S-1-5-10

Authenticated User S-1-5-11

Restricted Code S-1-5-12

Terminal Server S-1-5-13

Logon IDs S-1-5-5-X-Y

NT Non-unique IDs S-1-5-21-...

Built-in Domain S-1-5-32

20. Concept - Sparse
20.1. Overview

Sparse files

fix the data runs page for NT4 (old style)
13 b8 ae 04 ff 00 old
03 b8 ae 04 00 new
bad clus on NT4 sparse data runs use -1!

NTFS Concepts

103



Chapter 5. Epilogue
1. ToDo

Unless otherwise specified, each item is a rewrite / overhaul.

Urgent

• Security

• Log

• Index Root

• Attribute Id

• FILE Record

Medium

• Cross-ref $Secure

• Cross-ref $Quota

• Attribute List

• Logged Utility Stream

• Compression

• Data Runs

• Directory

• File

• Index Header

• Index Record

• Sparse files

Low

• Res/Non-res in Overview

• Table (P8) sizes

• Data

• Reparse Point

• File Reference

104



• USN confusion

• Remove Links?

• Restart

• SID

• Glossary

2. Unanswered Questions
This, final, section of the documentation is the place for all the unanswered questions. Some relate to
Windows' use of NTFS and some are very technical.

Your help is needed to fill in the blanks.

• Why do some Metadata files on NTFS 3.0+ still have Security Descriptors?

On NTFS 3.0+, $Volume, $AttrDef, dot and $Boot have Security Descriptors. Is this to save time at
boot up? Perhaps to reduce the number of files it has to parse? Or is this the same as the previous
question?

• $STANDARD_INFORMATION: Max Versions, Version Number and Class Id?

Are any of the three fields used?

• Is $UsnJrnl's $J Data Stream a fixed size?

Is it a fixed size? Does it wrap around like $LogFile?

• What does $UsnJrnl's $Max Data Stream do?

There's a time stamp, two fields that might be flags and a field that might be a length.

• Attribute Header

When is "Initialised" not the same size as "Real"?

• $MountMgrDatabase

What is the format of this stream?

• MFT (FILE) Records

Will we only see MFT Extension records with inodes <23? Is the sequence number always equal to
the inode number for the Metadata?

• MFT Mirr

How large is this if the cluster size is greater than 4kB?

• Index Records

Are they always 4kB?

• Collation

Epilogue

105



Is a collation type ULONGS equivalent to GUID?

• Security Descriptors

How are ACEs inherited?

ToDo: copy questions to relevant pages and x-link.

3. History
Version 0.6

• Conversion to DocBook:

• Reordering files as chapters and sections.

• Removed/Reauthored paragraphs related specifically to the html format.

• Titled sections and tables.

• Line breaks became new paragraphs or removed.

• Presentation changes:

• Moving "Notes" and "Other information" to the bottom of each section.

• Removed illustrations from the Tree concept (will be returned in the future).

• Removed empty sections.

• Data Runs examples are described now in tables.

Version 0.5

• New:

• Added a link to the NTFS FAQ.

• Added the tree concept.

• Tidied, Fixed or Rewritten:

• Fixed the 3rd data run example.

• Add directory & Index View flags to the FileName attribute.

• More info about Reparse Points.

• More info about $usnjrnl.

• Updated $boot.

• Updated $mftmirr.

Epilogue

106



• Updated Security Descriptor attribute.

• Fixed a minor error in the attribute header concept.

• Fixed a minor error in the file record concept.

• Fixed a type in the clusters concept.

• Updated the thanks page.

• HTML Improvements:

• Added an icon to the html meta

• Moved the help menu to the front page

• Added the SF logo and a copyright to the footer

• Change the contact email to a picture.

• Removed a link from the glossary to the obsolete property_set page.

• Removed the contact info from the footer

• Fixed a link to sourceforge (removed the www. prefix).

• CSS updates.

• Whitespace cleanup

Version 0.4

• New:

• List of all Data Streams and Indexes

• Pages: About, Collation and SID

• (Some) info about XP

• Info about $Q, $O and $R

• Info about the MFT Zone

• More info about Indexes

• Load of new Glossay entries

• Tidied, Fixed or Rewritten:

• Standard Information, Filename, Fixup

• Standardise naming of the four time fields

• Standardise naming of the three file size fields

• Minor improvements to Bitmap and Quota

Epilogue

107



• HTML Improvements:

• Standardised tables

• Footnote links on every page: Validate HTML, CSS and Online

• Next / Prev links cycle through the index

• Better CSS compliance

• Added keywords to aid search engines

• Tweaked fonts

Version 0.3

• Worked in Anton's header files

• New page for Collation

• New page for Index Header

• New page for $UsnJrnl

• Reworked Index Record page

• New info for $ObjId

• New info for $Quota

• New info for $Secure

• New info for $Reparse

• $MountMgrDatabase added to dot

• Reworked $MFT page

• Lots of tidying up

Version 0.2

• Put everything under CVS control on SourceForge

• Added $Id CVS tag to the end of every file

• Added full path to the beginning of every file

• Fixed up CSS so old version of Netscape should look OK

• Updated $AttrDef

• Updated $EA

• Updated $EA_INFORMATION

Epilogue

108



• Updated $FILE_NAME

• Updated $STANDARD_INFORMATION

• Updated $VOLUME_INFORMATION

• Wrote entries for all the glossary items

• Access keys for Previous and Next , and .

• Fixed lots of typos

Version 0.1

• First public release, based on the very old "original docs"

Epilogue

109



Appendix Appendix I. License
1. GNU Free Documentation License
1.1. Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

1.2. 0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document free in the sense
of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modify-
ing it, either commercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of copyleft, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this Li-
cense principally for works whose purpose is instruction or reference.

1.3. 1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The Document, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as you.

A Modified Version of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A Secondary Section is a named appendix or a front-matter section of the Document that deals exclus-
ively with the relationship of the publishers or authors of the Document to the Document's overall sub-
ject (or to related matters) and contains nothing that could fall directly within that overall subject. (For
example, if the Document is in part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The Invariant Sections are certain Secondary Sections whose titles are designated, as being those of In-
variant Sections, in the notice that says that the Document is released under this License.

The Cover Texts are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License.

A Transparent copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and

110



straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not Transparent is called Opaque.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML produced by
some word processors for output purposes only.

The Title Page means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, Title Page means the text near the most prominent appearance of the
work's title, preceding the beginning of the body of the text.

1.4. 2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

1.5. 3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Document's license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible. You may add other materi-
al on the covers in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy
of the Document, free of added material, which the general network-using public has access to down-
load anonymously at no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition
to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Docu-
ment.

1.6. 4. MODIFICATIONS

License

111



You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the Mod-
ified Version filling the role of the Document, thus licensing distribution and modification of the Modi-
fied Version to whoever possesses a copy of it. In addition, you must do these things in the Modified
Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that ver-
sion gives permission.

2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

3. State on the Title page the name of the publisher of the Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

6. Include, immediately after the copyright notices, a license notice giving the public permission to
use the Modified Version under the terms of this License, in the form shown in the Addendum be-
low.

7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document's license notice.

8. Include an unaltered copy of this License.

9. Preserve the section entitled History, and its title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section
entitled History in the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

10. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous ver-
sions it was based on. These may be placed in the History section. You may omit a network loca-
tion for a work that was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

11. In any section entitled Acknowledgements or Dedications, preserve the section's title, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedic-
ations given therein.

12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Sec-
tion numbers or the equivalent are not considered part of the section titles.

13. Delete any section entitled Endorsements. Such a section may not be included in the Modified Ver-
sion.

14. Do not retitle any existing section as Endorsements or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sec-
tions and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified

License

112



Version's license notice. These titles must be distinct from any other section titles.

You may add a section entitled Endorsements, provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

1.7. 5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections entitled History in the various original documents,
forming one section entitled History; likewise combine any sections entitled Acknowledgements, and
any sections entitled Dedications. You must delete all sections entitled Endorsements.

1.8. 6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this Li-
cense, and replace the individual copies of this License in the various documents with a single copy that
is included in the collection, provided that you follow the rules of this License for verbatim copying of
each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this Li-
cense, provided you insert a copy of this License into the extracted document, and follow this License in
all other respects regarding verbatim copying of that document.

1.9. 7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified
Version of the Document, provided no compilation copyright is claimed for the compilation. Such a
compilation is called an aggregate, and this License does not apply to the other self-contained works
thus compiled with the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on

License

113



covers that surround only the Document within the aggregate. Otherwise they must appear on covers
around the whole aggregate.

1.10. 8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document un-
der the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in addi-
tion to the original versions of these Invariant Sections. You may include a translation of this License
provided that you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original English version will
prevail.

1.11. 9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for un-
der this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and
will automatically terminate your rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses terminated so long as such parties re-
main in full compliance.

1.12. 10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License or any later version applies to it, you have the option of fol-
lowing the terms and conditions either of that specified version or of any later version that has been pub-
lished (not as a draft) by the Free Software Foundation. If the Document does not specify a version num-
ber of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

License

114



Glossary
This is a glossary of all terms.

Some entries refer to other entries, e.g. See also.

Some entries have an entire page of their own, e.g. More...

Glossary

. (See Dot, Root Directory) See Dot, Root Directory.

Access Control Entry (ACE) An Access Control Entry is the smallest unit of security. It contains
a SID (either a user or a group) and permissions information.

The permission will be one of Access Allowed, Access Denied or
System Audit. This object has flags to determine how the permis-
sions should be inherited.
See Also Security Identifier (SID), Access Control List (ACL),
Audit, Auditing.

Access Control List (ACL) This security structure contains a list of ACEs.
See Also $SECURITY_DESCRIPTOR, Security Identifier (SID),
Access Control List (ACL), Audit, Auditing.

ACE (See Access Control
Entry)

See Access Control Entry (ACE).

ACL (See Access Control List) See Access Control List (ACL).

$AttrDef This metadata file contains the definitions of all the attributes that
are allowed on an NTFS volume.

(More...)

Attribute on disk a file is stored as a set of attributes resident / non res

$ATTRIBUTE_LIST This attribute is used when a file's attributes won't fit in a single
MFT File Record. It has a list of all the attributes and where they
can be found.

The $ATTRIBUTE_LIST is always stored in the Base FILE Record.

(More...)
See Also FILE Record, $MFT, Base FILE Record.

Audit, Auditing As part of the security permissions of a file, any actions performed
on the file can be recorded.

For example a file could be required to log all the people who tried
to read it, but didn't have the permissions to do so.

B+ Tree A B+ tree is a variant of the binary tree.

Instead of one data element per node, there are many.

In NTFS the actual number depends on the lengths of the names and

115



the cluster size).

The B+ tree retains the efficiency of a binary tree and also performs
well with large numbers of data elements (because the tree tends to
grow wide rather than deep).
See Also Binary Tree, Balanced Tree.

BAAD During chkdsk, if NTFS finds a multi-sector item (MFT, INDEX
BLOCK, etc) where the multi-sector header doesn't match the values
at the end of the sector, it marks the item with the magic number
'BAAD', and fill it with zeroes (except for a short at the end of each
sector...)

FIXME
"BAAD" == corrupt record
"CHKD" == chkdsk ???
"FILE" == mft entry
"HOLE" == ??? (NTFS 3.0+?)
"INDX" == index buffer
RSTR & ???

See Also chkdsk, fsck.

$Bad This is the named Data Stream representing bad clusters on a
volume.
See Also $BadClus.

$BadClus This metadata file lists all the unreadable clusters on the volume.

(More...)

Balanced Tree Often binary trees can become very uneven. By reorganising the
data, the tree can be balanced such that no a node has similar num-
bers of children to it's left and right.
See Also B+ Tree, Binary Tree.

Base FILE Record If the attributes don't fit into a single MFT record then the Base
FILE Record holds enough information to locate the other records.
See Also $ATTRIBUTE_LIST, FILE Record, $MFT.

Binary Maths carried out in base two. In this documentation, certain flags
fields are represented in binary, for the sake of clarity.

e.g. 00001000
2
, 010000000

2
.

See Also Decimal, Hex, Hexadecimal, Units.

Binary Tree This is an efficient way of storing sorted data in order.

Each node in the tree represents a data element.

The left child node is a collection of all the elements that come be-
fore it.

The right child node is a collection of all the elements that come
after it.
See Also B+ Tree, Balanced Tree.

Glossary

116



Bit One binary digit, one or zero.
See Also Units.

$Bitmap This metadata file keeps track of which clusters are in use on the
volume.

(More...)

$BITMAP This attribute keeps track of which records are in use in an index.

(More...)

Block In Linux terminology, this is a cluster. Block device In Linux ter-
minology, this is a storage unit.

Cluster is the minimum allocation unit.

Clusters are a fixed power of 2 of the sector size (called the cluster
factor), and their size can be between 512 bytes and 4 KB
(Sometimes 64 KB, but 4 KB is the largest cluster size that the cur-
rent NTFS compression engine can operate with.

That limit may be related to the 4 KB page size used on the Intel
i386 CPU).

This size can be set with the Windows NT format utility, whose de-
fault is: Volume size Cluster size 1 to 512 MB Sector size 512 MB
to 1 GB 1 KB 1 GB to 2 GB 2 KB more than 2 GB 4 KB

$Boot This metadata file points at the boot sector of the volume.

It contains information about the size of the volume, clusters and the
MFT.

(More...)

Byte (See Units) See Units.

chkdsk This is a DOS and Windows utility to check and repair filesystems.

Its name is an abbreviation of check disk.
See Also fsck.

Cluster This is the smallest unit of disk that NTFS uses and it is a multiple
of the sector size.

It is determined when the volume is formatted and cannot be altered
afterwards.
See Also Sector, $Boot, Volume.

Compression NTFS supports file- and directory-level compression.

The compression is performed transparently when the file is read or
written.

Any new files in a compressed directory will automatically be com-
pressed.
See Also Compression Unit.

Glossary

117



Compression Unit Each file marked to be compressed is divided into sixteen cluster
blocks, known as compression units.

If one of these blocks cannot be compressed into fifteen clusters or
less it is left uncompressed.

This division also helps accessing a file randomly, ie it isn't neces-
sary to decompress the whole file.
See Also Cluster, Compression.

$DATA This attribute contains the actual data for a file.

This stream may also have a name.

(More...)

Data Runs Non-resident attributes are stored in intervals of clusters called runs.

Each run is represented by its starting cluster and its length.

The runs map the VCNs of a file to the LCNs of a volume.

(More...)
See Also Attribute, Cluster, Logical Cluster Number (LCN), Virtual
Cluster Number (VCN), Volume.

Decimal Maths carried out in base ten.

In this documentation, numbers that are neither in hex, nor binary,
are in decimal, e.g. 16 (sixteen), 23 (twenty-three).
See Also Binary, Hex, Hexadecimal, Units.

Directory An NTFS directory is an index attribute. NTFS uses index attributes
to collate file names.

A directory entry contains the name of the file and a copy of the
file's standard information attribute (time stamp information).

This approach provides a performance boost for directory browsing
because NTFS does not need to read the files' MFT records to print
directory information.

(More...)

DOS File Permissions (see File
Permissions)

See File Permissions.

Dot, Root Directory Root directory of the disk

(More...)

Drive (See Volume) See Volume.

Dynamic Disk

Dynamic disk SDS, win2k

$EA This attribute is used to implement the HPFS extended attribute un-
der NTFS.

Glossary

118



It is only used for OS/2 compatibity.

(More...)

$EA_INFORMATION This attribute is used to implement the HPFS extended attribute un-
der NTFS.

It is only used for OS/2 compatibity.

(More...)

$EFS $EFS is the named $LOGGED_UTILITY_STREAM of any encryp-
ted file.
See Also $LOGGED_UTILITY_STREAM.

$Extend This metadata directory contains the metadata files:

• $ObjId

• $Quota

• $Reparse

(More...)

File In the NTFS terminology, a file can be a normal file, directory (like
in Linux) or a system file.

(More...)

$FILE_NAME This attribute represents the file's name.

A file can have one or more names, which can be in any directory.

This is the NTFS equivalent to Unix's hard links.

(More...)

Filename Namespace Not all characters are valid in DOS filenames.

For compatibity NTFS stores which namespace the name belongs to.

(More...)

File Permissions NTFS supports the standard set of DOS file permissions, namely
Archive, System, Hidden and Read Only.

In addition, NTFS supports Compressed and Encrypted.
See Also $SECURITY_DESCRIPTOR, Compression.

FILE Record The $MFT is made up of FILE records, so named because of a ma-
gic number of FILE.

Each record has a standard header and a list of attributes.

If the attributes don't fit into a single record, then more records will
be used and a $ATTRIBUTE_LIST attribute will be needed.

Glossary

119



See Also Attribute, $ATTRIBUTE_LIST, Magic Number, $MFT.

File Record Segment (FRS)

FRS = MFT File Record

File Reference Each file record has a unique number identifying it.

The first 48 bits are a sequentially allocated number which is the
offset in the $MFT.

The last 16 bits are a sequence number.

Every time the record is altered this number is incremented.

The sequence number can help detect errors on the volume.
See Also FILE Record, $MFT, Volume.

File Runs (See Data Runs) See Data Runs.

File Size There are three file sizes that NTFS records.

Each of them stores the number of bytes.

• R) Real. The number of bytes of data.

• A) Allocated. The size taken up on disk.

• I) Initialised. Size of compressed file.

If the file is compressed, the Initialised Size may be smaller than the
Real Size.

Filesystem The physical structure an operating system uses to store and organ-
ize files on a storage unit.

A commonly used filesystem is FAT (used by DOS).

Fixup (See Update Sequence) See Update Sequence.

Fork (See Resource Fork) See Resource Fork.

Fragmented (un)f file

FRS (See File Record Seg-
ment)

See File Record Segment (FRS).

fsck This is a utility to check and repair filesystems.

Its name is an abbreviation of filesystem check.

GB (See Units) See Units.

GUID (See Units)

The valid format for a GUID is {XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

Globally Unique Identifier (GUID)

Glossary

120



GUID structures store globally unique identifiers (GUID). A GUID is a
128-bit value consisting of one group of eight hexadecimal digits, followed
by three groups of four hexadecimal digits each, followed by one group of
twelve hexadecimal digits. GUIDs are Microsoft's implementation of the
distributed computing environment (DCE) universally unique identifier (UUID).
Example of a GUID:

1F010768-5A73-BC91-0010A52216A7

order stored on disk?

01020304-0506-0708-090A0B0C0D0E0F010

0x00 04030201
0x04 0605
0x06 0807
0x08 090A0B0C0D0E0F010

Hex, Hexadecimal Maths carried out in base sixteen.

In this documentation, many numbers represented in hex, e.g.
0x02E0, 0xF100.
See Also Binary, Decimal, Units.

HFS (See Hierarchical File
System)

See Hierarchical File System (HFS).

Hierarchical File System
(HFS)

The MacOS filesystem.

High Performance File System
(HPFS)

The OS/2 filesystem.

Remember: once upon a time, OS/2 had to be the operating system
developed by both IBM and Microsoft.

There was a break between the 2 giants. IBM continued to develop
OS/2 (it became OS/2 Warp), and that explains why OS/2 knows
how to execute Windows applications. Microsoft decided to make
its own operating system: Windows NT.

HPFS design influenced NTFS design, so the 2 filesystems share
many features.

HPFS (See High Performance
File System)

See High Performance File System (HPFS).

$I30 This is the named index used by directories.

The name refers to attribute 0x30 ($FILE_NAME).
See Also Attribute, Directory, $FILE_NAME, Index.

Index just the whole index idea)

$INDEX_ALLOCATION This attribute contains the location of the entries that make up an in-
dex.

(More...)

$INDEX_ROOT This attribute is the root of an index.

The index is stored as a balanced binary tree.

Glossary

121



The only attribute which is indexed is $FILE_NAME and the index
is called $I30.

(More...)

INDX Record Index records are used by directories, $Quota, $Reparse and
$Secure.

The contents depend on the type of index being kept.

Directories store $FILE_NAME attributes.

(More...)
See Also Directory, $I30, $Quota, $Reparse, $Secure.

Infinite Logging Area Something contained in $LogFile. It consists of a sequence of 4KB
log records.
See Also $LogFile.

Inode An inode is the filesystems representation of a file, directory, device,
etc.

In NTFS every inode it represented by an MFT FILE record.
See Also Directory, File, FILE Record, Filesystem.

$J $J is a named data stream of the Metadata File $UsnJrnl.
See Also $UsnJrnl.

Junction Point Microsoft term for a mount point, available in NT 5.0.

KB (See Units) See Units.

LCN (See Logical Cluster
Number)

See Logical Cluster Number (LCN).

Log Record One 4KB chunk of the infinite logging area. It starts with the magic
number 'RCRD' and a fixup, then has undocumented variable length
data. [The log record might be further subdivided - I cannot imagine
they waste 4KB if they only have to log a few bytes. Custer men-
tions high level and low level 'records'. High level are: - allocate in-
ode n, - make a directory entry foo in directory m low level are: -
modify inode n with the new contents of <1KB>]

$LogFile This metadata file is used to guarantee data integrity in case of a sys-
tem failure.

It has two copies of the restart area and the infinite logging area.

The log file is near the centre of the volume, just after the second
cluster of the boot file. [Better say 'run' than cluster. The boot file
usually extends over several clusters at the beginning of the disk,
and then has a single run of just one cluster (the copy of the boot
sector). Also, isn't it 'infinite'?]

Transactional logging file

(More...)

Glossary

122



AM This attribute is used by encrypted files.

(More...)

Logical Cluster Number
(LCN)

A volume is divided into clusters. They are numbered sequentially,
starting at zero.
See Also Cluster, Volume.

Logical Sequence Number
(LSN)

A serial number used to identify an NTFS log record.

LSN (See Logical Sequence
Number)

See Logical Sequence Number (LSN).

Magic Number Most of the on-disk structures in NTFS have a unique constant
identifying them.

This number is usually located at the beginning of the structure and
can be used as a sanity check.

Master File Table See Master File Table.

$Max $Max is a named Data Stream of $UsnJrnl.
See Also $UsnJrnl.

MB (See Units) See Units.

Metadata Data on the storage unit used by the filesystem only, as a frame to
access user data.

Metadata constitutes the structure of the filesystem).

Metadata examples from various filesystems include FATs, inode
tables, free block lists, free block bitmaps, logging areas, and the su-
perblock.

meta-data

Data about data. In data processing, meta-data is definitional data
that provides information about or documentation of other data managed
within an application or environment.

For example, meta data would document data about data elements or
attributes, (name, size, data type, etc) and data about records or
data structures (length, fields, columns, etc) and data about data
(where it is located, how it is associated, ownership, etc.). Meta
data may include descriptive information about the context, quality
and condition, or characteristics of the data.

$MFT This metadata file, the Master File Table, is an index of all the files
on the volume.

It contains the attributes of each file and the root of any indexes.

(More...)

$MFTMirr This metadata file stores a copy of the first four records of $MFT.

It is a safety measure which probably only gets used when chkdsk is
run.

Glossary

123



(More...)

$MountMgrDatabase $MountMgrDatabase is a named Data Stream of dot (the root direct-
ory).

It contains a list of mounted volumes.
See Also Dot, Root Directory.

MST (See Multi-Sector Trans-
fer)

See Multi-Sector Transfer.

Multi-Sector Transfer

multiple sectors, fixup, safety checks

Nibble Half of a byte (4 bits).

NT Authority The NT Authority defines the scope of the security identifier.

Numbers 0 - 4 represent internal identifiers,

e.g. World, Local. 5 represents the NT Authority.
See Also NT Sub Authority, Security Identifier (SID),
$SECURITY_DESCRIPTOR.

NTFS NTFS is the file system of Windows NT, Windows 2000 and Win-
dows XP.

(More...)
See Also Filesystem.

NT Sub Authority The Sub Authority can contain any number of fields (five is usual).

Sub Authorities beginning with 21 (0x15) denote a NT Domain
identifier.
See Also NT Authority, Security Identifier (SID),
$SECURITY_DESCRIPTOR.

$O This is one of the named indexes belonging to $Quota and $ObjId.
See Also Index, $Q, $ObjId, $Quota.

$OBJECT_ID This attribute stores a mapping between a SID and a Security Hash.

(More...)

$ObjId This attribute record's the unique identifiers given to files and direct-
orys when using Distributed Link Tracking.

(More...)

PAM Pluggable Authentication Modules (PAM) are a set of libraries for
validating security on Linux.

Partition (See Volume) See Volume.

Partition Table

partition table...

Glossary

124



SFS Win2K dynamic disk

Permissions There are two mechanisms for storing permissions in NTFS.

One is a superset of DOS File Permissions, which includes Read
Only and Hidden.

The other is based on ACEs and allows granting specific permis-
sions to specific users.
See Also Access Control Entry (ACE), File Permissions,
$SECURITY_DESCRIPTOR.

POSIX An acronym (pronounced like positive) for Portable Operating Sys-
tem Interface, suggested by Richard M. Stallman.

It is a set of international standards (ISO/IEC 9945-1:1996(E), AN-
SI/IEEE Std 1003.1 1996 Edition) to interface with Unix-like ex-
ploitation systems, e.g. Linux.

NTFS does not support Unix-like device files.

$PROPERTY_SET An obsolete attribute (0xF0) from NT4

$Q This is one of the named indexes belonging to $Quota.
See Also Index, $O, $Quota.

$Quota This metadata file stores information about file quotas.

(More...)

$R This is the named index belonging to $Reparse.
See Also Index, $Reparse.

RCRD Record This record is used in the $LogFile.

Each represents an atomic transaction that is to be performed.
See Also $LogFile, Transaction.

Record There are several record types in NTFS.

FILE Record are used in the $MFT, INDX Records in indexes,
RCRD and RSTR Records in the $LogFile.
See Also FILE Record, INDX Record, RCRD Record, RSTR Re-
cord.

Recursion See Recursion.

Reference file (are there any others?)

$Reparse This metadata file stores information about reparse points.

(More...)

$REPARSE_POINT This attribute stores information about reparse points.

(More...)

Glossary

125



Resource Fork In MacOS's filesystem, HFS, files are allowed to have multiple data
streams.

These are called resource forks.
See Also Hierarchical File System (HFS), Stream.

Roll-back When an NTFS volume is mounted, it is checked to see if it is in a
consistant state.

If it isn't then the $LogFile is consulted and transactions are undone
until the disk returns to a consistant state.

This does not guarantee data integrity, only disk integrity.
See Also $LogFile, Transaction, Volume.

Root Directory (See Dot, Root
Directory)

See Dot, Root Directory.

RSTR Record Two copies of this are in $LogFile.

A restart area has the magic number 'RSTR' followed by a fixup and
some other data, including three LSNs.

A restart area has a pointer into the log area, such as the first and last
log records written and the last checkpoint record written. (that is
three - now which is which?)

Runs (See Data Runs) See Data Runs.

$SDH This is one of the named indexes belonging to $Secure.
See Also Index, $SII, $Secure.

$SDS This is the named data stream belonging to $Secure.
See Also $Secure, Stream.

Sector Unit of data on the physical storage unit.

The storage controller can only access data in multiples of this unit.

A sector is usually 512 bytes, but can be 1 KB on certain Asian hard
disks.

$Secure This metadata file stores a table of security descriptors used by the
volume.

(More...)

Security There are two levels of security in NTFS.

There are the DOS File Permissions, such as Read Only and Hidden
and an ACL model which grants specific permissions to specific
users.
See Also Access Control Entry (ACE), Access Control List (ACL),
Permissions, $SECURITY_DESCRIPTOR, Security Identifier
(SID).

$SECURITY_DESCRIPTOR This attribute stores all the security information about a file or dir-
ectory.

It contains an ACL for auditing, an ACL for permissions and a SID

Glossary

126



to show the user and group of the owner.

(More...)
See Also Attribute, Access Control List (ACL), Access Control
Entry (ACE), Security Identifier (SID).

Security Identifier (SID) This variable-length identifier uniquely identifies a user or a group
on an NT domain. It is used in the security permissions.
See Also Access Control Entry (ACE), Access Control List (ACL),
$SECURITY_DESCRIPTOR.

Sequence Array (See Update
Sequence)

See Update Sequence.

SID (See Security Identifier) See Update Sequence.

$SII This is one of the named indexes belonging to $Secure.
See Also Index, $SDH, $Secure.

Sparse File NTFS supports sparse files. If a file contains large, contiguous,
blocks of zeros, then NTFS can choose to not waste any space stor-
ing these portions on disk.

They are represented as data runs containing nothing.

When read from disk, NTFS simply substitutes zeros.
See Also Data Runs.

$STANDARD_INFORMATI
ON

This attribute contains information about a file, such as its file per-
missions and when it was created.

(More...)

Stream All data on NTFS is stored in streams, which can have names.

A file can have more than one data streams, but exactly one must
have no name.

The size of a file is the size of its unnamed data attribute.

$SYMBOLIC_LINK This attribute, like $VOLUME_VERSION existed in NTFS v1.2,
but wasn't used.

It does not longer exist in NTFS v3.0+.

TB (See Units) See Units.

Time Stamp NTFS stores four significant times referring to files and directories.

They are: File creation time; Last modification time; Last modifica-
tion of the MFT record; Last access time.

NTFS stores dates as the number of 100ns units since Jan 1 st 1601.

Unix, stores dates as the number of seconds since Jan 1 st 1970.

standardise 4 time fields name & description concept page?
refer to 4 times as:
C creation

Glossary

127



A alter (modification)
M mft (mft changed)
R read (last access)

FIXME:
NOTE: There is conflicting information about the meaning of each of the time
fields but the meaning as defined below has been verified to be
correct by practical experimentation on Windows NT4 SP6a and is hence
assumed to be the one and only correct interpretation.

creation_time
Time file was created. Updated when a filename is changed(?).

last_data_change_time
Time the data attribute was last modified.

last_mft_change_time
Time this mft record was last modified.

last_access_time
Approximate time when the file was last accessed (obviously this is not
updated on read-only volumes). In Windows this is only updated when
accessed if some time delta has passed since the last update.

N.B. There is conflicting information about the meaning of each of the time
fields but the meaning as defined below has been verified to be
correct by practical experimentation on Windows NT4 SP6a and is hence
assumed to be the one and only correct interpretation.

See Also FILE Record.

Transaction A transaction on a system is a set of operations (on that system) that
constitutes a unit. This unit can't be divided.

Before the transaction, the state of the system is well defined. Dur-
ing the transaction, it is undefined. After the transaction, it is well
defined again.

A transaction can't be half-realized: if no operation fails, the transac-
tion is realized. If on the contrary an error occurs in one or more of
the operations, the transaction is not realized.

A set of (even atomic) operations is not atomic by definition. A
transaction is a model that provides a kind of atomicity to this set of
operations.

Unfragmented (see Fragmen-
ted)

See Fragmented.

Unicode International character set coded on 16 bits (ASCII is coded on 7
bits and Latin-1 coded on 8 bits). Unicode can represent every sym-
bol of almost every language in the world.

Units Every size in this document is measured in bytes (unless clearly
marked).

The abbreviations for sizes are:

Glossary

128



Table 122. Measurement Units

Abbr. Name Exactly Approx.

KB Kilobyte 2 10 10 3

MB Megabyte 2 20 10 6

GB Gigabyte 2 30 10 9

TB Terabyte 2 40 10 12

see also Binary, Decimal, Hexadecimal

N.B. Technically, the correct abbreviation for 1024 bytes is KiB,
which stands for kilobinary bytes.

$UpCase This metadata file contains 128KB of capital letters.

For each character in the Unicode alphabet, there is an entry in this
file.

It is used to compare and sort filenames.

(More...)

Update Sequence Several structures in NTFS have sequence numbers in them to check
for consistancy errors.

They are FILE, INDX, RCRD and RSTR records.

Before the record is written to disk, the last two bytes of each sector
are copied to an array in the header.

The update sequence number is then incremented and written to the
end of each sector.

If any disk corruption occurs, this technique could detect it.

The Update Sequence Array (usa) is an array of the __u16 values which belong
to the end of each sector protected by the update sequence record in which
this array is contained. Note that the first entry is the Update Sequence
Number (usn), a cyclic counter of how many times the protected record has
been written to disk. The values 0 and -1 (ie. 0xffff) are not used. All
last __u16's of each sector have to be equal to the usn (during reading) or
are set to it (during writing). If they are not, an incomplete multi sector
transfer has occured when the data was written.
The maximum size for the update sequence array is fixed to:

maximum size = usa_ofs + (usa_count * 2) = 510 bytes
The 510 bytes comes from the fact that the last __u16 in the array has to
(obviously) finish before the last __u16 of the first 512-byte sector.
This formula can be used as a consistency check in that usa_ofs +
(usa_count * 2) has to be less than or equal to 510.

See Also FILE Record, INDX Record, RCRD Record, RSTR Re-
cord.

$UsnJrnl

Glossary

129



used for logging

(More...)

VCN (See Virtual Cluster
Number)

See Virtual Cluster Number (VCN).

Virtual Cluster Number (VCN) When representing the data runs of a file, the clusters are given vir-
tual cluster numbers.

Cluster zero refers to the first cluster of the file.

The data runs map the VCNs to LCNs so that the file can be located
on the volume.
See Also Cluster, Logical Cluster Number (LCN), Volume.

Volume (=drive=partition) (extended, striped, mirrored (not supported))

A logical NTFS partition. It is a group of physical partitions (see the
fdisk utility, you can set up mirroring and stripping) that act as one
(somewhat like the Linux md block devices).

$Volume This metadata file contains information such as the name, serial
number and whether the volume needs checking for errors.

(More...)

$VOLUME_INFORMATION This attribute contains information such as the serial number, cre-
ation time and whether the volume needs checking for errors.

(More...)

$VOLUME_NAME This attribute stores the name of the volume in Unicode.

(More...)

$VOLUME_VERSION This attribute, like $SYMBOLIC_LINK existed in NTFS v1.2, but
wasn't used.

It does not longer exist in NTFS v3.0+.

Glossary

130


	NTFS Documentation
	Table of Contents
	Chapter 1. Prologue
	1. NTFS Documentation Preface
	2. About the NTFS Documentation
	2.1. Overview
	2.2. Documentation Layout
	2.3. Accuracy
	2.4. Contact Points
	2.5. License
	2.6. Thanks

	3. Tables Legend
	3.1. Overview
	3.2. Footnotes
	3.3. Size Fields
	3.4. Indexes
	3.5. Operating System

	4. Volume Layout
	4.1. Overview
	4.2. Notes
	4.2.1. Other information
	4.2.2. MFT Zone



	Chapter 2. NTFS Attributes
	1. Overview
	1.1. Notes
	1.1.1. Other Information


	2. Attribute - $STANDARD_INFORMATION (0x10)
	2.1. Overview
	2.2. Layout of the Attribute (Resident)
	2.2.1. File Permissions

	2.3. Notes
	2.3.1. Other Information
	2.3.2. Questions


	3. Attribute - $ATTRIBUTE_LIST (0x20)
	3.1. Overview
	3.2. Layout of the Attribute
	3.3. Notes
	3.3.1.  $AttrDef
	3.3.2. Other Information
	3.3.3. To Do


	4. Attribute - $FILE_NAME (0x30)
	4.1. Overview
	4.2. Layout of the Attribute (Resident)
	4.2.1. File Reference
	4.2.2. File Size
	4.2.3. Flags

	4.3. Notes
	4.3.1. Other Information


	5. Attribute - $OBJECT_ID (0x40)
	5.1. Overview
	5.2. Layout of the Attribute
	5.2.1. Birth Volume Id
	5.2.2. Birth Object Id
	5.2.3. Domain Id

	5.3. Notes
	5.3.1. Other Information


	6. Attribute - $SECURITY_DESCRIPTOR (0x50)
	6.1. Overview
	6.2. Layout of the Attribute
	6.2.1. Notes
	6.2.1.1. Size


	6.3. Layout of the stream
	6.3.1. Questions
	6.3.2. To Do
	6.3.3. Header

	6.4. ACL
	6.5. ACE
	6.5.1. Types
	6.5.2. Flags
	6.5.3. Access Mask / Access Rights

	6.6. SID (Security Identifier)
	6.6.1. Security Descriptor Control Flags
	6.6.1.1. OWNER DEFAULTED
	6.6.1.2. GROUP DEFAULTED
	6.6.1.3. DACL PRESENT
	6.6.1.4. DACL DEFAULTED
	6.6.1.5. SACL PRESENT
	6.6.1.6. SACL DEFAULTED
	6.6.1.7. SELF RELATIVE



	7. Attribute - $VOLUME_NAME (0x60)
	7.1. Overview
	7.2. Layout of the Attribute
	7.3. Notes

	8. Attribute - $VOLUME_INFORMATION (0x70)
	8.1. Overview
	8.2. Layout of the Attribute
	8.2.1. Flags

	8.3. Notes
	8.3.1. Dirty Flag
	8.3.2. Version numbers
	8.3.3. Other Information


	9. Attribute - $DATA (0x80)
	9.1. Overview
	9.2. Layout of the Attribute
	9.3. Notes
	9.3.1. Common Data Stream Used By Windows
	9.3.2. Other Information


	10. Attribute - $INDEX_ROOT (0x90)
	10.1. Overview
	10.2. Layout of the Attribute
	10.2.1. Index Root
	10.2.2. Index Header
	10.2.3. Flags

	10.3. Notes
	10.3.1. Size
	10.3.2. Sequence of index entries

	10.4. List of Common Indexes

	11. Attribute - $INDEX_ALLOCATION (0xA0)
	11.1. Overview
	11.2. Layout of the Attribute
	11.2.1. Index Entry
	11.2.2. Flags

	11.3. Notes
	11.3.1. Length of the stream
	11.3.2. Stream


	12. Attribute - $BITMAP (0xB0)
	12.1. Overview
	12.2. Layout of the Attribute

	13. Attribute - $REPARSE_POINT (0xC0)
	13.1. Overview
	13.2. Layout of the Attribute (Microsoft Reparse Point)
	13.3. Layout of the Attribute (Third-Party Reparse Point)
	13.3.1. Symbolic Link Reparse Data
	13.3.2. Volume Link Reparse Data
	13.3.3. Reparse Tag Flags

	13.4. Notes
	13.4.1. Other Information


	14. Attribute - $EA_INFORMATION (0xD0)
	14.1. Overview
	14.2. Layout of the Attribute

	15. Attribute - $EA (0xE0)
	15.1. Overview
	15.2. Layout of the Attribute
	15.2.1. Flags

	15.3. Notes
	15.3.1. Other Information
	15.3.2. Questions


	16. Attribute - $LOGGED_UTILITY_STREAM (0x100)
	16.1. Overview
	16.2. Layout of the Attribute
	16.3. Notes
	16.3.1. Other Information



	Chapter 3. NTFS Files
	1. Overview
	1.1. Layout of the Volume
	1.2. Notes
	1.2.1. Unused Inodes
	1.2.2. Other Information


	2. NTFS Files: $MFT (0)
	2.1. Overview
	2.2. $MFT Attributes
	2.3. Layout of the File
	2.3.1. Unnamed Data Stream

	2.4. Notes
	2.4.1. MFT Zone
	2.4.2. Other Information


	3. NTFS Files: $MFTMirr (1)
	3.1. Overview
	3.2. $MFTMirr Attributes
	3.3. Layout of the File
	3.3.1. Unnamed Data Stream


	4. NTFS Files: $LogFile (2)
	4.1. Overview
	4.2. $LogFile Attributes
	4.3. Layout of the File
	4.3.1. Unnamed Data Stream

	4.4. Notes
	4.4.1. Other Information


	5. NTFS Files: $Volume (3)
	5.1. Overview
	5.2. $Volume Attributes
	5.3. Layout of the File
	5.3.1. Unnamed Data Stream

	5.4. Notes
	5.4.1. Other Information


	6. NTFS Files: $AttrDef (4)
	6.1. Overview
	6.2. $AttrDef Attributes
	6.3. Layout of the File
	6.3.1. Unnamed Data Stream
	6.3.2. Display Rule
	6.3.3. Collation Rule
	6.3.4. Flags

	6.4. Notes
	6.4.1. Other Information

	6.5. Examples
	6.5.1. Windows NT Example
	6.5.2. Windows 2000 and Windows XP Example


	7. NTFS Files: . (Root Directory) (5)
	7.1. Overview
	7.2. Dot (.) Attributes
	7.3. Layout of the File
	7.3.1. $MountMgrDatabase Data Stream

	7.4. Notes
	7.4.1. Other Information


	8. NTFS Files: $Bitmap (6)
	8.1. Overview
	8.2. $Bitmap Attributes
	8.3. Layout of the File
	8.3.1. Unnamed Data Stream

	8.4. Notes
	8.4.1. MFT Zone
	8.4.2. Other Information


	9. NTFS Files: $Boot (7)
	9.1. Overview
	9.2. $Boot Attributes
	9.3. Layout of the File
	9.3.1. Unnamed Data Stream

	9.4. 
	9.5. Notes
	9.5.1. Other Information


	10. NTFS Files: $BadClus (8)
	10.1. Overview
	10.2. $BadClus Attributes
	10.3. Layout
	10.3.1. Unnamed Data Stream
	10.3.2. $Bad Data Stream

	10.4. Notes
	10.4.1. Other Information


	11. NTFS Files: $Secure (9)
	11.1. Overview
	11.2. $Secure Attributes
	11.3. Layout of the File
	11.3.1. $SDS Data Stream
	11.3.2. $SDH Index
	11.3.3. $SII Index

	11.4. Notes
	11.4.1. Questions


	12. NTFS Files: $UpCase (10)
	12.1. Overview
	12.2. $UpCase Attributes
	12.3. Layout of the File
	12.3.1. Unnamed Data Stream

	12.4. Notes
	12.4.1. Other Information


	13. NTFS Files: $Extend (11)
	13.1. Overview
	13.2. $Extend Attributes
	13.3. Layout of the File
	13.3.1. $I30 Index

	13.4. Notes
	13.4.1. Other Information


	14. NTFS Files: $ObjId (Any)
	14.1. Overview
	14.2. $ObjId Attributes
	14.3. Layout of the File
	14.3.1. $O Index
	14.3.2. Flags

	14.4. Notes
	14.4.1. Other Information


	15. NTFS Files: $Quota (NT:9, 2K:Any)
	15.1. Overview
	15.2. $Quota Attributes
	15.3. Layout of the File
	15.3.1. $O Index
	15.3.2. $Q Index
	15.3.3. Flags

	15.4. Notes
	15.4.1. Other Information


	16. NTFS Files: $Reparse (Any)
	16.1. Overview
	16.2. $Reparse Attributes
	16.3. Layout of the File
	16.3.1. $R Index

	16.4. Notes
	16.4.1. Other Information


	17. NTFS Files: $UsnJrnl (Any)
	17.1. Overview
	17.2. $UsnJrnl Attributes
	17.3. Layout of the File
	17.3.1. $J Data Stream

	17.4. 
	17.4.1. $Max Data Stream

	17.5. Notes


	Chapter 4. NTFS Concepts
	1. Overview
	1.1. Index

	2. Concept - Attribute Header
	2.1. Overview
	2.2. Standard Attribute Header
	2.2.1. Resident, No Name
	2.2.2. Resident, Named
	2.2.3. Non-Resident, No Name
	2.2.4. Non-Resident, Named
	2.2.5. Flags

	2.3. Notes
	2.3.1. Other Information


	3. Concept - Attribute Id
	3.1. Overview

	4. Concept - B*Trees
	4.1. Overview
	4.2. Basic Terminology
	4.3. NTFS Trees
	4.4. Discussion
	4.5. References

	5. Concept - Clusters
	5.1. Overview
	5.1.1. Logical Cluster Number (LCN)
	5.1.2. Virtual Cluster Number (VCN)
	5.1.3. Data Runs

	5.2. Notes
	5.2.1. Other information
	5.2.2. Questions


	6. Concept - Collation
	6.1. Overview
	6.2. Usage
	6.3. Notes
	6.3.1. Questions


	7. Concept - Compression
	7.1. Overview

	8. Concept - Data Runs
	8.1. Overview
	8.2. Layout
	8.2.1. ...Example

	8.3. data runs
	8.4. Examples
	8.4.1. Example 1 - Normal, Unfragmented File
	8.4.2. Example 2 - Normal, Fragmented File
	8.4.3. Example 3 - Normal, Scrambled File
	8.4.4. Example 4 - Sparse, Unfragmented File
	8.4.5. Example 5 - Compressed, Unfragmented File
	8.4.6. Example 6 - Compressed, Sparse, Fragmented File


	9. Concept - Directory
	9.1. Overview
	9.2. Attributes
	9.2.1. 
	9.2.1.1. Index Entry
	9.2.1.2. Index Root
	9.2.1.3. Index Allocation
	9.2.1.4. Index Bitmap


	9.3. Definition
	9.4. Properties
	9.5. Interest

	10. Concept - File
	10.1. Overview
	10.2. Attributes
	10.2.1. Standard Information
	10.2.2. File Name
	10.2.3. Security Descriptor
	10.2.4. Data

	10.3. Named Data Streams
	10.4. Summary Information

	11. Concept - File Record
	11.1. Overview
	11.2. Layout
	11.3. Notes

	12. Concept - File Reference
	12.1. Overview
	12.2. Layout
	12.3. Notes
	12.3.1. Sequence number


	13. Concept - Filename Namespace
	13.1. Overview
	13.2. Possible Namespaces

	14. Concept - Fixup
	14.1. Overview
	14.2. What Does It Do?
	14.3. Example
	14.4. The Details
	14.4.1. Writing
	14.4.2. Reading


	15. Concept - Index Header
	15.1. Overview
	15.2. Layout
	15.2.1. Standard Index Header

	15.3. Notes
	15.3.1. List of Common Indexes
	15.3.2. Other Information


	16. Concept - Index Record
	16.1. Overview
	16.2. Definition
	16.3. Layout
	16.3.1. The header part
	16.3.2. The sequence of index entries part


	17. Concept - Links
	17.1. Overview
	17.2. Interest
	17.3. Questions

	18. Concept - Restart
	18.1. Overview

	19. Concept - SID
	19.1. Overview

	20. Concept - Sparse
	20.1. Overview


	Chapter 5. Epilogue
	1. ToDo
	2. Unanswered Questions
	3. History

	Appendix Appendix I. License
	1. GNU Free Documentation License
	1.1. Version 1.1, March 2000
	1.2. 0. PREAMBLE
	1.3. 1. APPLICABILITY AND DEFINITIONS
	1.4. 2. VERBATIM COPYING
	1.5. 3. COPYING IN QUANTITY
	1.6. 4. MODIFICATIONS
	1.7. 5. COMBINING DOCUMENTS
	1.8. 6. COLLECTIONS OF DOCUMENTS
	1.9. 7. AGGREGATION WITH INDEPENDENT WORKS
	1.10. 8. TRANSLATION
	1.11. 9. TERMINATION
	1.12. 10. FUTURE REVISIONS OF THIS LICENSE


	Glossary

