
JFFS : The Journalling Flash File System

David Woodhouse
Red Hat, Inc.

dwmw2@cambridge.redhat.com

Abstract

Until recently, the common approach to using Flash
memory technology in embedded devices has been
to use a pseudo-filesystem on the flash chips to em-
ulate a standard block device and provide wear lev-
elling, and to use a normal file system on top of that
emulated block device.

JFFS is a log-structured file system designed by
Axis Communications AB in Sweden specifically for
use on flash devices in embedded systems, which is
aware of the restrictions imposed by flash technol-
ogy and which operates directly on the flash chips,
thereby avoiding the inefficiency of having two jour-
nalling file systems on top of each other.

This paper will give an overview of the restrictions
imposed by flash technology and hence the design
aims of JFFS, and the implementation of both JFFS
and the improvements made in version 2, including
compression and more efficient garbage collection.

1 Introduction

1.1 Flash

Flash memory is an increasingly common storage
medium in embedded devices, because it provides
solid state storage with high reliability and high
density, at a relatively low cost.

Flash is a form of Electrically Erasable Read Only
Memory (EEPROM), available in two major types —
the traditional NOR flash which is directly accessi-
ble, and the newer, cheaper NAND flash which is
addressable only through a single 8-bit bus used for
both data and addresses, with separate control lines.

These types of flash share their most important
characteristics — each bit in a clean flash chip will
be set to a logical one, and can be set to zero by a
write operation.

Flash chips are arranged into blocks which are typ-
ically 128KiB on NOR flash and 8KiB on NAND
flash. Resetting bits from zero to one cannot be
done individually, but only by resetting (or “eras-
ing”) a complete block. The lifetime of a flash chip
is measured in such erase cycles, with the typical
lifetime being 100,000 erases per block. To ensure
that no one erase block reaches this limit before the
rest of the chip, most users of flash chips attempt
to ensure that erase cycles are evenly distributed
around the flash; a process known as “wear level-
ling”.

Aside from the difference in erase block sizes, NAND
flash chips also have other differences from NOR
chips. They are further divided into “pages” which
are typically 512 bytes in size, each of which has
an extra 16 bytes of “out of band” storage space,
intended to be used for metadata or error correc-
tion codes. NAND flash is written by loading the
required data into an internal buffer one byte at a
time, then issuing a write command. While NOR
flash allows bits to be cleared individually until
there are none left to be cleared, NAND flash allows
only ten such write cycles to each page before leak-
age causes the contents to become undefined until
the next erase of the block in which the page resides.

1.2 Flash Translation Layers

Until recently, the majority of applications of flash
for file storage have involved using the flash to em-
ulate a block device with standard 512-byte sectors,
and then using standard file systems on that emu-
lated device.

The simplest method of achieving this is to use a



simple 1:1 mapping from the emulated block device
to the flash chip, and to simulate the smaller sector
size for write requests by reading the whole erase
block, modifying the appropriate part of the buffer,
erasing and rewriting the entire block. This ap-
proach provides no wear levelling, and is extremely
unsafe because of the potential for power loss be-
tween the erase and subsequent rewrite of the data.
However, it is acceptable for use during develop-
ment of a file system which is intended for read-
only operation in production models. The mtdblock
Linux driver provides this functionality, slightly op-
timised to prevent excessive erase cycles by gather-
ing writes to a single erase block and only perform-
ing the erase/modify/writeback procedure when a
write to a different erase block is requested.

To emulate a block device in a fashion suitable for
use with a writable file system, a more sophisticated
approach is required.

To provide wear levelling and reliable operation, sec-
tors of the emulated block device are stored in vary-
ing locations on the physical medium, and a “Trans-
lation Layer” is used to keep track of the current
location of each sector in the emulated block de-
vice. This translation layer is effectively a form of
journalling file system.

The most common such translation layer is a com-
ponent of the PCMCIA specification, the “Flash
Translation Layer” [FTL]. More recently, a variant
designed for use with NAND flash chips has been in
widespread use in the popular DiskOnChip devices
produced by M-Systems.

Unfortunately, both FTL and the newer NFTL are
encumbered by patents — not only in the United
States but also, unusually, in much of Europe and
Australia. M-Systems have granted a licence for
FTL to be used on all PCMCIA devices, and allow
NFTL to be used only on DiskOnChip devices.

Linux supports both of these translation layers, but
their use is deprecated and intended for backwards
compatibility only. Not only are there patent is-
sues, but the practice of using a form of journalling
file system to emulate a block device, on which a
“standard” journalling file system is then used, is
unnecessarily inefficient.

A far more efficient use of flash technology would be
permitted by the use of a file system designed specif-
ically for use on such devices, with no extra layers of

translation in between. It is precisely such a filesys-
tem which Axis Communications AB released in late
1999 under the GNU General Public License.

2 JFFS Version 1

The design goals of JFFS are largely determined by
the characteristics of flash technology and of the de-
vices in which it is expected to be used — as embed-
ded and battery-powered devices are often treated
by users as simple appliances, we must ensure re-
liable operation when the system is uncleanly shut
down.

2.1 Storage Format

The original JFFS is a purely log-structured file sys-
tem [LFS]. Nodes containing data and metadata are
stored on the flash chips sequentially, progressing
strictly linearly through the storage space available.

In JFFS v1, there is only one type of node in the
log; a structure known as struct jffs raw inode.
Each such node is associated with a single inode.
It starts with a common header containing the in-
ode number of the inode to which it belongs and all
the current file system metadata for that inode, and
may also carry a variable amount of data.

There is a total ordering between the all the nodes
belonging to any individual inode, which is main-
tained by storing a version number in each node.
Each node is written with a version higher than all
previous nodes belonging to the same inode. The
version is an unsigned 32-bit field, allowing for 4
milliard nodes to be written for each inode during
the life span of the file system. Because the lim-
ited lifetime of flash chips means this number is
extremely unlikely to be reached, this limitation is
deemed to be acceptable.

Similarly, the inode number is stored in a 32-bit
field, and inode numbers are never reused. The same
logic applies to the acceptability of this limitation,
especially as it is possible to remove this restriction
without breaking backwards compatibility of JFFS
file systems, if it becomes necessary.

In addition to the normal inode metadata such as



uid, gid, mtime, atime, mtime etc., each JFFS v1
raw node also contains the name of the inode to
which it belongs and the inode number of the parent
inode.1

Each node may also contain an amount of data, and
if data are present the node will also record the off-
set in the file at which these data should appear.
For reasons which are discussed later, there is a re-
striction on the maximum size of physical nodes,
so large files will have many nodes associated with
them, each node carrying data for a different range
within the file.

Nodes containing data for a range in the inode which
is also covered by a later node are said to be obso-
leted, as are nodes which contain no data, where the
metadata they contain has been outdated by a later
node. Space taken by obsoleted nodes is referred to
as “dirty space”.

Special inodes such as character or block devices and
symbolic links which have extra information associ-
ated with them represent this information — the
device numbers or symlink target string — in the
data part of the JFFS node, in the same manner as
regular files represent their data, with the exception
that there may be only one non-obsolete node for
each such special inode at any time. Because sym-
bolic links and especially device nodes have small
amounts of such data, and because the data in these
inodes are always required all at once rather than
by reading separate ranges, it is simpler to ensure
that the data are not fragmented into many different
nodes on the flash.

Inode deletion is performed by setting a deleted
flag in the inode metadata. All later nodes asso-
ciated with the deleted inode are marked with the
same flag, and when the last file handle referring
to the deleted inode is closed, all its nodes become
obsolete.

2.2 Operation

The entire medium is scanned at mount time, each
node being read and interpreted. The data stored in
the raw nodes provide sufficient information to re-
build the entire directory hierarchy and a complete
map for each inode of the physical location on the

1The lack of distinction between directory entries and in-
odes means that the original JFFS cannot support hard links.

medium of each range of data.

JFFS v1 stores all this information at all times while
the file system is mounted. Each directory lookup
can be satisfied immediately from data structures
held in-core, and file reads can be performed by
reading immediately from the appropriate locations
on the medium into the supplied buffer.

Metadata changes such as ownership or permissions
changes are performed by simply writing a new node
to the end of the log recording the appropriate new
metadata. File writes are similar; differing only in
that the node written will have data associated with
it.

2.3 Garbage Collection

The principles of operation so far are extremely
simple. The JFFS code happily writes out new
jffs raw inode structures to the medium to mark
each change made to the filesystem. . . until, that is,
it runs out of space.

At that point, the system needs to begin to reclaim
the dirty space which contains old nodes which have
been obsoleted by subsequent writes.

The oldest node in the log is known as the head, and
new nodes are added to the tail of the log. In a
clean filesystem which on which garbage collection
has never been triggered, the head of the log will
be at the very beginning of the flash. As the tail
approaches the end of the flash, garbage collection
will be triggered to make space.

Garbage collection will happen either in the context
of a kernel thread which attempts to make space
before it is actually required, or in the context of
a user process which finds insufficient free space on
the medium to perform a requested write. In either
case, garbage collection will only continue if there is
dirty space which can be reclaimed. If there is not
enough dirty space to ensure that garbage collection
will improve the situation, the kernel thread will
sleep, and writes will fail with −ENOSPC errors.

The goal of the garbage collection code is to erase
the first flash block in the log. At each pass, the
node at the head of the log is examined. If the node
is obsolete, it is skipped and the head moves on to



the next node.2 If the node is still valid, it must be
rendered obsolete. The garbage collection code does
so by writing out a new data or metadata node to
the tail of the log.

The new node written will contain the currently
valid data for at least the range covered by the origi-
nal node. If there is sufficient free space, the garbage
collection code may write a larger node than the
one being obsoleted, in order to improve storage ef-
ficiency by merging many small nodes into fewer,
larger nodes.

If the node being obsoleted is already partially ob-
soleted by later nodes which cover only part of the
same range of data, some of the data written to the
new node will obviously differ from the data con-
tained in the original.

In this way, the garbage collection code progresses
the head of the log through the flash until a com-
plete erase block is rendered obsolete, at which point
it is erased and becomes available for reuse by the
tail of the log.

2.4 Housekeeping

The JFFS file system requires a certain amount of
space to be available between the head and the tail
of the log at all times, in order to ensure that it is
always possible to proceed with garbage collection
by writing out new nodes as described above.

A simplified analysis of this situation is as follows:

In order to be able to erase the next block from
the head of the log, there must be sufficient space
to write out new nodes to obsolete all the nodes
in that block. The worst case is that all nodes in
the block are valid, the first node starts at the very
beginning of the block, and the final node starts
just before the end of the block and extends into
the subsequent block.

By restricting the maximum size of a data node to
half the size of the flash erase sector, we limit the
amount of free space required in this worst case sce-

2Actually, if the node was obsoleted the reference to it
would already have been removed from the linked list of nodes
which JFFS stores. The head pointer only ever points to a
valid node. This is an implementation detail, though. The
point is that valid nodes are obsoleted, and obsoleted nodes
are ignored — either explicitly or implicitly.

nario to one and a half times the size of the flash
sectors in use.

In fact, the above is only an approximation — it
ignores the fact that a name is stored with each
node on the flash, and that renaming a file to a
longer name will cause all nodes belonging to that
file to grow when they are garbage collected.3

The precise amount of space which is required in
order to ensure that garbage collection can continue
is not formally proven and may not even be bounded
with the current algorithms.

Empirical results show that a value of four flash sec-
tors seems to be sufficient, while the previous de-
fault of two flash sectors would occasionally lead to
the tail of the log reaching the head and complete
deadlock of the file system.

2.5 Evolution

The original version of JFFS was used by Axis in
their embedded devices in a relatively limited fash-
ion, on 2.0 version of the Linux kernel.

After the code was released, it was ported to the
2.3 development kernels by a developer in Sweden.
Subsequently, Red Hat, Inc. were asked to port it to
the 2.2 series and provide commercial support for a
contract customer.

Although the design of the file system was impres-
sive, certain parts of the implementation appeared
not to have been tested by its use in Axis’ products.
Writing data anywhere other than at the end of a
file did not work, and deleting a file while a process
had a valid file descriptor for it would cause a kernel
oops.

After some weeks of reliability and compliance test-
ing, JFFS reached stability. It is a credit to the
clarity and quality of the original code that it was
possible to become familiar with it and bring it to
the current state in a relatively short space of time.

3An attempt was made to limit this growth by counting
the number of valid nodes containing the current name of
each file, and writing out a name with a new node only if
there were fewer than two such nodes. This attempt was
abandoned because the initial implementation was buggy and
could lead to a situation with no valid copies of a file name,
and because it would not have solved the problem properly
even if the hard-to-find bugs were located and fixed.



However, during this time it became apparent that
there were a few serious flaws in the original imple-
mentation of the filesystem:

Garbage collection would proceed linearly
through the medium, writing out new nodes
to allow it to erase the oldest block in the
log, even if the block being garbage collected
contained only clean nodes.

In the relatively common situation where a 16
MiB file system contained 12 MiB of static data
— libraries and program executables, 2 MiB of
slack space and 2 MiB of dynamic data, the
garbage collection would move the 12 MiB of
static data from one place on the flash to an-
other on every pass through the medium. JFFS
provided perfect wear levelling — each block
was erased exactly the same number of times —
but this meant that the blocks were also erased
more often than was necessary.

Wear levelling must be provided, by occasion-
ally picking on a clean block and moving its
contents. But that should be an occasional
event, not the normal behaviour.

Compression was not supported by JFFS. Be-
cause of the cost of flash chips and the con-
stant desire to squeeze more functionality into
embedded devices, compression was a very im-
portant requirement for a large proportion of
potential users of JFFS.

Hard links were also not supported by the origi-
nal version of the filesystem. While this lack
was not particularly limiting, it was annoying,
as was the fact that file names were stored
with each jffs raw inode, potentially leading
to unbounded space expansion upon renames.

3 JFFS2

In January of 2001, another customer required com-
pression support in JFFS to be provided as part of a
contract undertaken. After a period of discussion on
the mailing list, it was concluded that the most ap-
propriate course of action would be a complete reim-
plementation, allowing all of the above-mentioned
deficiencies in the original implementation to be ad-
dressed.

The JFFS2 code was intended to be portable, in par-
ticular to eCos, Red Hat’s embedded operating sys-
tem targetted at consumer devices[eCos]. For this
reason, JFFS2 is released under a dual licence —
both under GPL and the MPL-style “Red Hat eCos
Public License”, to be compatible with the licence
of the remainder of the eCos source.

Although portability was intended, no ports have
yet been completed, and the current code is only
usable with the 2.4 series of Linux kernels.

3.1 Node Format and Compatibility

While the original JFFS had only one type of node
on the medium, JFFS2 is more flexible, allowing
new types of node to be defined while retaining
backward compatibility through use of a scheme in-
spired by the compatibility bitmasks of the ext2 file
system.

Every type of node starts with a common header
containing the full node length, node type and a
cyclic redundancy checksum (CRC). The common
node structure is shown in Figure 1.

0x19 0x85
Magic Bitmask

MSB LSB

Total Node Length

Node Header CRC

Node Type

Figure 1: JFFS2 Common Node Header.

In addition to a numeric value uniquely identify-
ing the node structure and meaning, the node type
field also contains a bitmask in the most significant
two bits which indicates the behaviour required by
a kernel which does not support the node type used:

JFFS2 FEATURE INCOMPAT — on finding a node with
this feature mask which is not explicitly sup-
ported, a JFFS2 implementation must refuse
to mount the file system.

JFFS2 FEATURE ROCOMPAT — a node with this feature
mask may be safely ignored by an implemen-



tation which does not support it, but the file
system must not be written to.

JFFS2 FEATURE RWCOMPAT DELETE — an unsupported
node with this mask may be safely ignored
and the file system may be written to. Upon
garbage collecting the sector in which it is
found, the node should be deleted.

JFFS2 FEATURE RWCOMPAT COPY — an unsupported
node with this mask may be safely ignored
and the file system may be written to. Upon
garbage collecting the sector in which it is
found, the node should be copied intact to a
new location.

It is an unfortunate matter of record that this com-
patibility bitmask was in fact the reason why it was
necessary to break compatibility with older JFFS2
file systems. Originally, the CRC was omitted from
the common node header, and it was discovered that
because the INCOMPAT feature mask has more bits
set than the other bitmasks, it is relatively easy, by
interrupting erases, to accidentally generate a struc-
ture on the medium which looks like an unknown
node with the INCOMPAT feature bit set. For this
reason, a CRC on the node header was added, in
addition to the existing CRCs on the node contents
and on the data or name field if present.

3.2 Log Layout and Block Lists

Aside from the differences in the individual nodes,
the high-level layout of JFFS2 also changed from a
single circular log format, because of the problem
caused by strictly garbage collecting in order. In
JFFS2, each erase block is treated individually, and
nodes may not overlap erase block boundaries as
they did in the original JFFS.

This means that the garbage collection code can
work with increased efficiency by collecting from
one block at a time and making intelligent decisions
about which block to garbage collect from next.

Each erase block may be in one of many states,
depending primarily on its contents. The JFFS2
code keeps a number of linked lists of structures
representing individual erase blocks. During the
normal operation of a JFFS2 file system, the ma-
jority of erase blocks will be on the clean list or
the dirty list, which represent blocks full of valid

nodes and blocks which contain at least one obso-
leted node, respectively. In a new filesystem, many
erase blocks may be on the free list, and will con-
tain only one valid node — a marker which is present
to show that the block was properly and completely
erased.

As mentioned previously, the garbage collection
code uses the lists to choose a sector for garbage col-
lection. A very simple probabilistic method is used
to determine which block should be chosen — based
on the jiffies counter. If jiffies % 100 is non-
zero, a block is taken from the dirty list. Oth-
erwise, on the one-in-one-hundred occasions that
the formula is zero, a block is taken from the
clean list. In this way, we optimise the garbage
collection to re-use blocks which are already par-
tially obsoleted, but over time, we still move data
around on the medium sufficiently well to ensure
that no one erase block will be worn out before the
others.

3.3 Node Types

The third major change in JFFS2 is the separation
between directory entries and inodes, which allows
JFFS2 to support hard links and also removes the
problem of repeating name information which was
referred to in the footnote on page 4.

At the time of writing there are three types of nodes
defined and implemented by JFFS2. These are as
follows:

JFFS2 NODETYPE INODE — this node is most similar
to the struct jffs raw inode from JFFS v1.
It contains all the inode metadata, as well as
potentially a range of data belonging to the in-
ode. However, it no longer contains a file name
or the number of the parent inode. As with tra-
ditional UNIX-like file systems, inodes are now
entirely distinct entities from directory entries.
An inode is removed when the last directory en-
try referring to it has been unlinked, and there
it has no open file descriptors.

Data attached to these nodes may be com-
pressed using one of many compression algo-
rithms which can be plugged into the JFFS2
code. The simplest types are “none” and
“zero”, which mean that the data are uncom-
pressed, or that the data are all zero, respec-



tively. Two compression algorithms were de-
veloped specifically for use in JFFS2, and also
the JFFS2 code can contain yet another copy
of the zlib compression library which is already
present in at least three other places in the
Linux kernel source.4

In order to facilitate rapid decompression of
data upon readpage() requests, nodes contain
no more than a single page of data, according to
the hardware page size on the target platform.
This means that in some cases JFFS2 filesys-
tem images are not portable between hosts, but
this is not a serious problem because the nature
of the flash storage medium makes transporta-
tion between devices unlikely. JFFS2 is also
entirely host-endian in its storage of numbers
larger than a single byte.

JFFS2 NODETYPE DIRENT — this node represents a di-
rectory entry, or a link to an inode. It contains
the inode number of the directory in which the
link is found, the name of the link and the inode
number of the inode to which the link refers.
The version number in a dirent node is in the
sequence of the parent inode. A link is removed
by writing a dirent node with the same name
but with target inode number zero — and ob-
viously a higher version.

POSIX requires that upon renaming, for ex-
ample “passwd.new” to “passwd”, the replace-
ment of the passwd link should be atomic —
there should not be any time at which a lookup
of that name shall fail to return either the old or
the new target. JFFS2 meets that requirement,
although as with many other file systems, the
entire rename operation is not atomic.

Renaming is performed in two stages. First a
new dirent node is written, with the new name
and the inode number of the inode being re-
named. This atomically replaces the link to the
original inode with the new one, and is identi-
cal to the way in which a hard link is created.
Next, the original name is unlinked, by writing
a dirent node with the original name and target
inode number zero.

This two-stage process means that at some
point during the rename operation, the inode
being renamed into place is accessible through
both the old and the new names. This be-
haviour is permitted by POSIX — the atom-

4This duplication is scheduled to be fixed fairly early dur-
ing the 2.5 development series.

icity guarantee required is for the behaviour of
the target link only.

JFFS2 NODETYPE CLEANMARKER — this node is written
to a newly erased block to show that the erase
operation has completed successfully and the
block may safely be used for storage.

The original JFFS simply assumed that any
block which appeared at first scan to contain
0xFF in every byte was free, and would se-
lect the longest run of apparently free space at
mount time to be the space between the head
and tail of the log. Unfortunately, extensive
power fail testing on JFFS proved this to be
unwise. For many types of flash chips, if power
is lost during an erase operation, some bits may
be left in an unstable state, while most are reset
to a logical one. If the initial scan happens to
read all ones and treat a block containing such
unstable bits as usable, then data may be lost
— and such data loss may not even be avoidable
by the näıve method of verification by reading
back data immediately by writing, because the
bit may just happen to return the correct value
when read back for verification.

Empirical results showed that even rereading
the entire contents of the block multiple times
in an attempt to detect unstable bits was not
sufficiently reliable to avoid data loss, so an al-
ternative approach was required. The accepted
solution was to write the marker node to the
flash block immediately after successful com-
pletion of an erase operation. Upon encounter-
ing flash blocks which do not appear to contain
any valid nodes, JFFS2 will trigger an erase op-
eration and subsequently write the appropriate
marker node to the erased block.

This node type was introduced after JFFS2 had
started to be used in real applications, and uses
the RWCOMPAT DELETE feature bitmask to sig-
nify that an older JFFS2 implementation may
safely ignore the node.

3.4 Operation

The operation of JFFS2 is at a fundamental level
very similar to that of the original JFFS — nodes,
albeit now of various types, are written out sequen-
tially until a block is filled, at which point a new
block is taken from the free list and writing con-
tinues from the beginning of the new block.



When the size of the free list reaches a heuristic
threshold, garbage collection starts, moving nodes
from an older block into the new block until space
can be reclaimed by erasing the older one.

However, JFFS2 does not keep all inode informa-
tion in core memory at all times. During mount,
the full map is built as before — but the structures
kept in memory are strictly limited to the informa-
tion which cannot be recreated quickly on-demand.
For each inode on the medium, there is a struct
jffs2 inode cache which stores its inode number,
the number of current links to the inode, and a
pointer to the start of a linked list of the physical
nodes which belong to that inode. These structures
are stored in a hash table, with each hash bucket
containing a linked list. The hash function is a very
primitive one - merely the inode number modulo
the size of the hash table. The distribution of inode
numbers means this should be well-distributed.5

Each physical node on the medium is represented by
a smaller struct jffs2 raw node ref, also shown
in Figure 2, which contains two pointers to other
raw node references — the next one in the physical
erase block and the next one in the per-inode list —
and also the physical offset and total length of the
node. Because of the number of such structures and
the limited amount of RAM available on many em-
bedded systems, this structure is extremely limited
in size.

Because all nodes on the medium are aligned to a
granularity of four bytes, the least significant two
bits of the flash offset field are redundant. They
are therefore available for use as extra flags. The
least significant bit is set to indicate that the node
represented is an obsolete node, and the other is not
yet used.

For garbage collection, it is necessary to find, given
a raw node reference, the inode to which it be-
longs. It is preferable not to add four bytes con-
taining this information to every such structure, so
instead we play even more evil games with the point-
ers. Rather than having a NULL-terminated linked
list for the next in ino list, the last raw node ref-
erence actually contains a pointer to the struct
jffs2 inode cache for the relevant inode. Because

5The size of the hash table is variable at compile time,
and in all cases is currently only one entry - which effectively
means that all inode cache structures are stored in a single
linked list. If and when this becomes noticeably suboptimal,
it will be simple to correct.

next_in_ino

next_phys

totlen

flash_offset

next_in_ino

next_phys

totlen

flash_offset

next_in_ino

next_phys

totlen

flash_offset

Obsolete flag

Unused flag

next

nodes

ino

nlink

NULL

struct jffs2_inode_cache

struct jffs2_raw_node_ref

Figure 2: Raw Node Reference Lists

that structure has a NULL at the offset where the
struct jffs2 raw node ref would the pointer to
the next node in the inode, the code traversing the
list knows it has reached the end, at which point
the pointer can be cast to the appropriate type and
the inode number and other information can be read
from the structure.

The NULL field shown in the inode cache structure
is used only during the initial scan of the filesystem
for temporary storage, and hence can be guaranteed
to be NULL during normal operation.

During normal operation, the file system’s
read inode() method is passed an inode number
and is expected to populate a struct inode
with appropriate information. JFFS2 uses the
inode number to look up the appropriate struct
jffs2 inode cache in a hash table, then uses
the list of nodes to directly read each node which



belongs to the required inode, thereby building up
a complete map of the physical locations of each
range of the inode’s data, similar to the information
which JFFS would have kept in memory even while
it was unused.

Once the full inode structure has been populated in
this manner, it remains in memory until the kernel
later tries to prune its inode cache under memory
pressure, at which point the extra information is
freed, leaving only the raw node references and the
minimal JFFS2 inode cache structure which were
originally present.

3.5 Mounting

Mounting a JFFS2 file system involves a four-stage
operation. First, the physical medium is scanned,
the CRCs on all the nodes are checked for validity,
and the raw node references are allocated. During
this stage, the inode cache structures are also allo-
cated and inserted into the hash table for each inode
for which valid nodes are found.

Extra information from the nodes on the flash is
cached, such as the version and the range of data
covered by the node, to prevent the subsequent
stages of the mount process from having to read
anything again from the physical medium.

After the physical scan is complete, a first pass
through all the physical nodes is made, building a
full map of the map of data for each inode so that
obsoleted nodes can be detected as such, and in-
creasing the nlink field in the inode cache of the
linked inode for each valid directory entry node.

A second pass is then made to find inodes which
have no remaining links on the file system and delete
them. Each time a directory inode is deleted, the
pass is restarted, as other inodes may have been or-
phaned. In future, this behaviour may be modified
to store orphaned inodes in a lost+found directory
instead of just removing them.

Finally, a third pass is made to free the temporary
information which was cached for each inode; leav-
ing only the information which is normally kept in
the struct jffs2 inode cache during operation.
In doing so, the field in the inode cache which cor-
responds to the next in ino field of the raw node
reference is set to NULL, thereby enabling the slightly

evil hack referred to earlier, for detecting that the
end of the next in ino list has been reached.

3.6 Garbage Collection

In JFFS2, garbage collection moves data nodes by
determining the inode to which the node to be
garbage collected belongs, and calling the Linux ker-
nel’s iget() function for the inode in question. Of-
ten, the inode will be in the kernel’s inode cache —
but sometimes, this will cause a call to the JFFS2
read inode() function as described above.

Once the full inode structure is obtained, a replace-
ment node can be written to obsolete the original
node. If it was a data node, the garbage collection
routine calls the standard readpage() function for
the page for which the node contains data — again
using the existing file system caching mechanism be-
cause the required page may already be in the page
cache. Then, as much of the page as possible is re-
compressed and written out in a new node. A par-
tial page may be written if the node to be garbage
collected is small and there is not sufficient slack
space to allow a full page to be written, or if the
page being garbage collected is at the end of the
inode.

One of the features which is strongly desired for
JFFS2 is a formal proof of correctness of the garbage
collection algorithm. The current empirical method
is not sufficient. The compression, however, gives
rise to a serious potential problem with this proof.
If a full page is written which compresses extremely
well, and later a single byte is written in the mid-
dle of the page which reduces the compressibility of
the page, then when garbage collecting the original
page we may find that the new node written out
is larger than the original. Thus, there would be
no way to place an upper bound on the amount of
space required to garbage collect an erase block full
of data.

The proposed solution to this is to allow the total
ordering of the version field to be relaxed to a par-
tial ordering. We allow two nodes to have the same
version field as long as they have identical data.
Thus, when garbage collection finds a node which
would expand, yet insufficient slack space to allow
it to do so, it may copy the original node intact, pre-
serving the original version so that the nodes which
overlay the data contained therein will still continue



to do so.

3.7 Truncation and File Holes

A problem which arose during the design stage for
JFFS2 which had not already been addressed for
the original version involved truncation of files. The
sequence of events which could be problematic was
a truncation followed by a write to an offset larger
than the truncation point — leaving a “hole” in the
file which should return all zeroes upon being read.

On truncation, the original JFFS merely wrote out
a new node giving the new length, and marked (in
memory) the older nodes containing data beyond
the truncation point as obsolete. Later writes would
occur as normal.

During a scan of the file system on remounting, the
sequential nature of the garbage collection ensured
that all the old nodes containing actual data for
the ranges which should be “holes” were garbage
collected before the truncation node. As nodes were
interpreted in version order after the physical scan,
correct behaviour could be guaranteed, because the
evidence of the truncation was still present at all
times until the old data were erased.

For JFFS2, where blocks can be garbage collected
out of order, it was necessary to ensure that old
data could never “show through” the holes caused
by truncation and subsequent extension of a file.

For this reason, it was decided that there should be
no holes in the proper sense — a complete absence
of information for the range of bytes in question.
Instead, upon receiving a request to write to an off-
set greater than the current size of a file, or a re-
quest to truncate to a larger size, JFFS2 inserts a
data node with the previously-mentioned compres-
sion type JFFS2 COMPR ZERO, meaning that no ac-
tual data are contained with the node, and the en-
tire range represented by the node should be set to
zero upon being read.

In the case where a file contains a very large hole, it
is preferable to represent that hole by only a single
physical node on the medium, rather than a “hole”
node for each page in the range affected. Therefore,
such hole nodes are a special case of data node; the
only type of data node which may cover a range of
more than one page.

This special case is itself the reason for further com-
plication, because of concerns about expansion dur-
ing garbage collection. If a single byte is written to
a page which was previously part of a hole, it is nec-
essary to ensure that garbage collection of either the
original hole node or the node containing the new
byte of data should not require more space than is
taken by the original.

The solution to this problem is the same as for com-
pressed nodes which may expand when merged —
if garbage collection would cause an expansion, and
there is insufficient slack space to accommodate such
growth, then the original node is copied exactly, re-
taining the original version number.

4 Future Development

One oft-requested feature which is currently not
planned for development in JFFS2 is eXecute In
Place (XIP) functionality. When programs are run
from JFFS2, the executable code is copied from the
flash into RAM before the CPU can execute it. Like-
wise, even when the mmap() system call is used,
data are not accessed directly from the flash but
are copied into RAM when required.

XIP functionality in JFFS2 is not currently planned
because it is fairly difficult to implement and be-
cause the potential benefits of XIP are not clearly
sufficient to justify the effort required to do so.

For obvious reasons, XIP and compression are mu-
tually exclusive - if data are compressed, they can-
not be used directly in place. Given a prototype
platform with sufficient quantities of both RAM and
flash that neither XIP or compression are required,
and the desire to save money on the hardware, a
choice can be made between halving the amount of
RAM and using XIP, or halving the amount of flash
and using compression.

By choosing the latter option, the cost saving will
generally be greater than the former option, because
flash is more expensive than RAM. The operating
system is able to be more flexible in its use of the
available RAM, discarding file buffers during peri-
ods of high memory pressure. Furthermore, because
write operations to flash chips are so slow, compress-
ing the data may actually be faster for many work-
loads.



The main problem with XIP, however, is the interac-
tion with memory management hardware. Firstly,
for all known memory management units, each page
of data must be exactly page-aligned on the flash
chip in order for it to be mapped into processes ad-
dress space – which makes such a file system even
more wasteful of space than the mere absence of
compression already implies. Secondly, while giv-
ing write or erase commands to a flash chip, it
may return status words on all read cycles, there-
fore all currently valid mappings of the pages of the
chip would have to be found and invalidated for the
duration of the operation. These two limitations
make a writable filesystem with XIP functionality
extremely difficult to implement, and it is unlikely
that JFFS2 could support XIP without fundamen-
tal changes to its design.

An read-only XIP filesystem would be a more rea-
sonable request, and an entirely separate file sys-
tem providing this functionality, based on the exist-
ing ROMFS file system, is likely to be developed at
some time in the near future.

4.1 Improved Fault Tolerance

The main area where JFFS2 still requires devel-
opment is in fault tolerance. There are still areas
where, although designed to be resilient, JFFS2 may
exhibit a more serious failure mode than is abso-
lutely necessary given a physical error.

In particular, JFFS2 will need more sophisticated
methods of dealing with single-bit errors in flash
chips. Currently, the node contains a 32-bit CRC,
but this only gives error detection; it does not allow
the file system to correct errors. Error correction
is an absolute requirement for operation on NAND
flash chips, which have lower tolerances. It is desir-
able even on NOR flash.

JFFS2 already has a primitive method of deal-
ing with blocks for which errors are returned by
the hardware driver — it files them on a separate
bad list and refuses to use them again until the
next time the file system is remounted. This should
be developed.

4.2 Garbage Collection Space Require-
ments

A major annoyance for users is the amount of space
currently required to be left spare for garbage collec-
tion. It is hoped that a formal proof of the amount
of required space can be produced, but in the mean-
time a very conservative approach is taken — five
full erase blocks must be available for writing before
new writes will be permitted from user space.

It should be possible to reduce this figure signifi-
cantly — hopefully to a single block for NOR flash
and to two or three blocks in the case of NAND
flash, where extra space should always be available
to copy away data from bad blocks.

The approach to this problem in JFFS1 was to eval-
uate and attempt to prove an upper bound on the
amount of space required. This appeared to fail be-
cause there appeared to be no such upper bound.
For JFFS2, it is suspected that a more useful ap-
proach may be to define a reasonable upper bound,
such as a single erase block, and to modify the code
to make it true.

4.3 Transaction Support

For storing database information in JFFS2 file sys-
tems, it may be desirable to expose transactions to
user space. It has been argued that user space can
implement transactions itself, using only the file sys-
tem functionality required by POSIX. This is true
— but implementing a transaction-based system on
top of JFFS2 would be far less efficient than using
the existing journalling capability of the file system;
for the same reason that emulating a block device
and then using a standard journalling file system on
top of that was considered inadequate.

Little work — and relatively little thought — has
gone into this subject with respect to JFFS2, yet at
first consideration it seems that to implement this in
JFFS2 would not be particularly difficult or obtru-
sive. It is an interesting avenue for future research.



5 Conclusion

Although JFFS2 is extremely young, it is relatively
mature, because it is developed from the excellent
start given by the design of JFFS v1.

The frequency of bugs being reported has reached
a fairly stable low level, and the majority of recent
problems reported with JFFS2 have actually turned
out to be errors in the physical flash drivers or with
other parts of kernel code — although sometimes
this has highlighted an area where JFFS2 should be
more fault-tolerant.

Both versions of JFFS are now in active use in a rea-
sonable number of embedded systems, and JFFS2
has been included as a fundamental part of the
“Familiar” distribution of Linux for the Compaq
iPAQ handheld computer; replacing the read-only
CRAMFS filesystem which was previously used on
those devices.

The existence of a fully-functional writable file sys-
tem for this class of device is an exciting develop-
ment, and was absolutely essential to the progress of
the Familiar distribution, allowing files to be over-
written individually without having to reset the de-
vice and use the bootloader to program a complete
replacement CRAMFS.

Commercial support for JFFS2 is available from
Red Hat, Inc., for customers wishing to use it in
production systems with full backup from the de-
velopers.

6 Acknowledgements

The author would like to thank Björn Wesen and
the staff of Axis Communications AB for designing
the original JFFS and releasing it under the GNU
General Public License — and in particular for then
answering a stream of silly questions about it.

The author is also grateful to Red Hat, Inc., who
for some reason took it upon themselves to actually
pay him for playing with this stuff.

Also deserving of a special mention is Vipin Malik,
who has done a wonderful job of testing JFFS and
JFFS2, often managing to break the latter when it

finally seemed to have reached stability.

7 Availability

JFFS was merged into the Linux kernel prior to the
2.4.0 release. The current JFFS2 code is also, at
the time of writing, in Alan Cox’s 2.4-ac kernels.
The latest code for the 2.4 version of each, and for
the 2.2 version of JFFS v1, is available from the
Linux-MTD CVS repository. Instructions for ac-
cessing this, along with links to snapshot tarballs
for the firewall-challenged, are available from:

http://www.linux-mtd.infradead.org/

The original web site for JFFS and the current
code for the 2.0 kernels, along with a link to the
jffs-dev mailing list which is used for discussion
of both JFFS and JFFS2, is at:

http://developer.axis.com/software/jffs/

At the time of writing, a web site specific to JFFS2
is intended to appear “shortly” at:

http://sources.redhat.com/jffs2/

References

[FTL] Intel Corporation, Understanding the Flash
Translation Layer (FTL) Specification, (1998).
http://developer.intel.com/design/flcomp/applnots/297816.htm

[LFS] Mendel Rosenblum and John K. Ousterhout,
The Design and Implementation of a Log-
Structured File System, ACM Transactions on
Computer Systems 10(1) (1992) pp. 26–52.
ftp://ftp.cag.lfs.mit.edu/dm/papers/rosenblum:lfs.ps.gz

[eCos] Red Hat, Inc., eCos — Embedded Config-
urable Operating System.
http://sources.redhat.com/ecos/


